Welcome to OSU Institute of Technology

When you chose to attend Oklahoma State University Institute of Technology, you effectively chose to begin your career. It can be very difficult for a young person to make long-term or even lifelong decisions, but I want you to know that a promising future awaits you at OSUIT.

In today’s economic times, all too many young people are graduating from colleges and universities around the country and finding it nearly impossible to obtain work in their fields of study. The rules have changed for first-time job seekers, and it is time for all of us to change our thinking about higher education as well. Today’s college-going students must make smarter decisions about the majors they will pursue and the institutions they will attend. Now more than ever, students need an education that not only prepares them to graduate, but prepares them to succeed in today’s job market. If you are one of those first-time job seekers, you need a college degree that leads to a specific occupational outcome and a university that understands how to get graduates placed into real jobs. Plainly said, you need OSUIT.

When you are ready to get serious about your future, you need to take a serious look at OSUIT. As Oklahoma’s only university of applied technology, we are an institution of higher education like no other. We offer multiple college degrees in specific work-related fields, and we coordinate our curriculum with corporate employers who are eager to hire well-trained personnel. In every discipline, we offer a hands-on education in advanced and emerging technologies that is designed to supply the expressed needs of our industry partners. We have such a proven track record of placing graduates in the job market that we are sometimes referred to as the “University of Jobs”. A rather fitting description when you consider that in most of our technical programs, students have a job waiting for them upon graduation and some even have multiple job offers.

At OSUIT, we believe the ability of graduates to obtain meaningful work should be the single most important consideration in measuring and choosing a college. If you agree, then let us guide you to your future at OSUIT. Use this catalog to learn more about the different programs and services of this institution. Plan a visit to our campus and meet our exceptional faculty and staff. Above all, we want to help you succeed in today’s job market. We want to be your “University of Jobs.”

Sincerest regards,

Dr. Bill R. Path
President
ACADEMIC CALENDAR

FALL SEMESTER 2012

Enrollment May 14 – Sep 4
Labor Day Holiday Sep 3
Move-in Day (Tuesday) Sep 4, Noon
Classwork Begins Sep 5, 7:30 AM
Last Drop with Refund Sep 18
Last Day to Withdraw* from 1st 8-week class with Automatic “W” Oct 8
Mid Semester Oct 19, 4:30 PM
Move-in Day for 2nd-Half Oct 23, Noon
Start 2nd-Half-Only Classes Oct 24, 7:30 AM
Last Day to Withdraw* from 15-week class with Automatic “W” Nov 16
Student Break Nov 21
Thanksgiving Day Holidays Nov 22/23
Classwork Resumes Nov 26, 7:30 AM
Last Day to Withdraw* from 2nd 8-week class with Automatic “W” Dec 3
Instructional Period Ends Dec 14, 11:30 AM
Graduation Exercises Dec 14, 2:00 PM
Student Break Dec 15 – Jan 7

SPRING SEMESTER 2013

Enrollment Oct 18 – Jan 7
Classwork Begins Jan 8, 7:30 AM
Martin Luther King Holiday Jan 21
Last Drop with Refund Jan 22
Last Day to Withdraw* from 1st 8-week class with Automatic “W” Feb 12
Mid Semester Feb 27, 4:30 PM
Move-in Day for 2nd Half Mar 4, Noon
Start 2nd-Half-Only Classes Mar 5, 7:30 AM
Spring Break Begins Mar 18, 7:30 AM
Classwork Resumes Mar 25, 7:30 AM
Last Day to Withdraw* from 15-week class with Automatic “W” Apr 1
Last Day to Withdraw* from 2nd 8-week class with Automatic “W” Apr 18
Instructional Period Ends Apr 26, 11:30 AM
Graduation Exercises Apr 26, 2:00 PM

SUMMER SEMESTER 2013

Enrollment Feb 25 – May 5
Classwork Begins May 6, 7:30 AM
Last Drop with Refund May 17
Memorial Day Holiday May 27
Last Day to Withdraw* from 1st 8-week class with Automatic “W” Jun 11
Mid Semester Jun 21, 4:30 PM

Summer Break Begins Jul 21, 4:30 PM
Classwork Resumes Jul 8, 7:30 AM
Start 2nd-Half-Only Classes Jul 8, 7:30 AM
Last Day to Withdraw* from 15-week class with Automatic “W” Aug 1
Last Day to Withdraw* from 2nd 8-week class with Automatic “W” Aug 12
Instructional Period Ends Aug 23, 11:30 AM
Graduation Exercises Aug 23, 3:00 & 7:00 PM

INTERIM SESSION 2013

Enrollment Feb 25 – June 2
Classwork Begins Jun 3, 7:30 AM
Last Drop with Refund Jul 7
Independence Day Holiday Jul 4
Last Day to Withdraw* from Summer Interim class with Automatic “W”* Jul 12
Interim Session Ends Jul 26, 4:30 PM

*Drop dates for courses that are less than 8-weeks in length will need to be determined by the Registrar’s Office.

Oklahoma State University Institute of Technology, in compliance with Titles VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, Title IX of the Education Amendments of 1972 (Higher Education Act), the Americans with Disabilities Act of 1990, and other federal laws and regulations, does not discriminate on the basis of race, color, national origin, sex, age, religion, disability, or status as a veteran in any of its policies, practices or procedures. This provision includes, but is not limited to, admission, employment, financial aid and educational services.
Table of Contents

Message from the President .. i
Academic Calendar ... i
Graduate Performance Guarantee ... vii
History of the University ... 1
Philosophy
Mission
Values
Philosophy of General Education
Philosophy of Assessment of Student Learning
Institutional Core Objectives
Accreditation ... 2
Philosophy of Assessment of Student Learning
Specialized Accreditation
Scope
Graduate Placement
Disclosure of Graduation Rates
Admissions .. 3

General Policies
Special Project Requirements
Immunization Records
Admission Policies & Requirements
Admission of First-Time College Students
First Time College Students Requirements
Admission of Transfer Students ... 4
Transfer Student Requirements
Special Admission
Concurrent Enrollment of High School Juniors or Seniors
Cooperative Alliance Agreements .. 5

Bachelor of Technology Requirements
Admissions Standards 2012-2013

Transfer of Credit
Transfer of Credit from Domestic and International Institutions ... 6

Credit for Extrainsitutional Learning
Academic Proficiency .. 7
Removal of Deficiencies

Non-Academic Criteria for Admission
Enrollment
International Admissions ... 8
Admission of International Students
Enrollment of International Students
Campus Facilities... 26
Student Union
Campus Health Services
Copy Center
Mail Service... 27
Student ID Cards
Recreation/Athletic Facilities
Child Care Center
Campus Laundry... 28
Residential Life and Food Services
Student Life
Regents’ Resolution on Disruptive Conduct.. 29
Traffic and Parking Violations... 30
Operating Vehicles on Campus
2011 Crime Statistics .. 31
OSUIT at the MidAmerica Industrial Park .. 32
College of the Muscogee Nation.. 33
 Board of Regents for the CMN
 Administration
 Faculty
Programs of Study.. 34
Allied Health Sciences Division ... 36
 Nursing (AAS)
 Orthotics & Prosthetics (AAS)
Arts & Sciences Division .. 38
 General Studies (degree seeking: undeclared majors)
 Allied Health Sciences (AS)
 Business (AS)
 Enterprise Development (Business Administration) (AS)
 Enterprise Development (General Studies) (AS)
 Office Information Systems Technology (AAS)
 Pre-Education (Elementary) (AS)
 Pre-Education (Secondary) (AS)
Automotive Technologies Division .. 47
 Automotive Collision Repair Technology (AAS)
 Automotive Service Technology (AAS)
 Chrysler MOPAR
 Ford ASSET
 GM ASEAP
 PRO-TECH
 Toyota T-TEN
College of the Muscogee Nation .. 53
 Gaming (AAS)
Construction Technologies Division

Air Conditioning & Refrigeration Technology (AAS)
Construction Technology (AAS)
- Construction Management
- Electrical
- High Voltage Electricity
- Masonry Construction
- Residential Construction
- Welding

Culinary Arts Division

Culinary Arts (AAS)

Engineering Technologies Division

Engineering Technologies (AAS)
- Civil Engineering/Surveying Specialization
- Electrical/Electronics Specialization
- Engineering Graphics & Design/Drafting Specialization
- Manufacturing Technology Specialization
Pipeline Integrity Technology (AAS)
Power Plant Technology (AAS)
Civil Engineering Technology (BT)
Instrumentation Engineering Technology (BT)
Admission Requirements & Process for Engineering Technologies (AAS)
Admission Requirements & Process for Engineering Technologies (BT)

HEVi Technologies Division

Diesel & Heavy Equipment Technology (AAS)
- Aggreko Technician Training Program
- CAT Dealer Prep
- Gas Processors Association/Gas Processors Suppliers Association,
 Natural Gas Compression Program
- Komatsu Advanced Career Training Program
- MHC Kenworth Truck Technology
- Manitowoc LIFT Program
- SouthWestern Assn. Industrial & Farm Equipment

Information Technologies Division

Information Technologies (AS)
Information Technologies (AAS)
Information Technologies (BT)

Visual Communications Technologies Division

Graphic Design Technology (AAS)
Multimedia Technology (AAS)
Photography Technology (AAS)

Watchmaking Division

Watchmaking & Microtechnology (AAS)

Course Descriptions

OSU INSTITUTE OF TECHNOLOGY
Graduate Performance Guarantee

OSU Institute of Technology certifies that this graduate has achieved graduate competencies identified by the appropriate academic department and its program advisory committee. If the graduate is judged to be lacking in job performance skills identified as exit competencies for the program of study, OSU Institute of Technology will provide up to nine tuition-free credit hours or equivalent of additional education.

Special conditions that apply to the Guarantee are as follows:

1. The graduate must have earned the AAS degree from OSU Institute of Technology beginning April 1993 or thereafter in a technical program identified in the current college catalog.
2. The graduate must have completed the AAS degree at OSU Institute of Technology with a majority of the credits being earned at OSU Institute of Technology and must have completed the degree within a four-year time span.
3. Graduates must be employed full-time in an area directly related to the program of concentration as certified by the Office of Academic Affairs.
4. Employment must commence within 12 months of graduation.
5. The employer must identify deficiencies and certify in writing, within 90 days of the graduate's initial employment that the employee is lacking specific entry-level skills guaranteed by OSU Institute of Technology as a part of the degree program.
6. The employer, graduate, department head, chief academic officer and the appropriate faculty will develop a written educational plan for the needed education.
7. Education will be limited to nine credit hours related to the identified skill deficiency and to those classes regularly scheduled during the period covered by the education plan.
8. All education must be completed within three semesters from the time the educational plan is agreed upon.
9. The graduate and/or employer is responsible for the cost of books, insurance, uniforms, fees, room and board, tools and other course-related expenses.
10. The Guarantee certifies only that the graduate has achieved competencies identified as appropriate by the academic department and its program advisory committee.

The Guarantee process can be initiated by written notification from the employer to the President, OSU Institute of Technology, 1801 East 4th Street, Okmulgee, OK 74447-3901.

For more information, call 918-293-5256.
HISTORY OF OSU INSTITUTE OF TECHNOLOGY

OSUIT has a very rich history. In facilities that served as a veteran’s hospital during World War II, OSUIT opened its doors in 1946 to alleviate over-crowding on the OSU-Stillwater campus due to the post-war enrollment boom. Sponsored by the Veterans Administration, the first class of 500 veterans enrolled to learn agricultural and mechanical trades. With no state or local revenue support, the college served only veterans and other agency-sponsored students for several years, and plans were to close the campus when the veterans’ demand for training had subsided.

By 1956, the college had a sound reputation for quality technical education and became a permanent part of Oklahoma’s higher education system.

OSUIT is located in Okmulgee County on U.S. Highway 75, a divided four-lane highway that extends from Kansas City, Kansas south to Dallas, Texas. Cyberwise, OSUIT can be found on the World Wide Web at http://www.osuit.edu.

Geographically, the college is in Okmulgee, Oklahoma, a town 38 miles south of Tulsa and 12 miles north of Interstate 40, a major east coast-west coast passage, in a rural, east central locale. Oklahoma, named for the Choctaw word meaning “red people,” is the home of 39 federally recognized Native American tribes—a larger number of tribes than in any other state.

The town of Okmulgee, as well, enjoys a rich Native American heritage. Okmulgee is the historical, as well as the present day, national capital city for the Muscogee (Creek) Tribe. The word Okmulgee is Creek for “bubbling water.” The Muscogee (Creek) Nation capitol complex is situated approximately two miles from the OSUIT campus.

OSUIT is a branch campus of Oklahoma State University-Stillwater (OSU-Stillwater) and is among very few state-supported, technical colleges with a mission focused primarily on technical-occupational career preparation. The majority of the students enroll with an expectation of full-time employment with good career advancement immediately upon graduation.

As a branch campus of the Oklahoma State University system, OSUIT enjoys a statewide mission. The trimester calendar, campus location, and residence facilities encourage a full-time, continuously enrolled, student population. OSUIT awards Associate in Science, Associate in Applied Science, and Bachelor of Technology degrees.

PHILOSOPHY

OSU Institute of Technology believes the opportunity to participate in education should be readily available and accessible to every person without regard to race, ethnic origin, religion, gender, handicap or level of income; these should not be impediments to an individual’s academic and social growth and development. The institution believes learning is a lifelong process that helps individuals develop their potential and increase their awareness of and capabilities for making reasoned choices. Differences among persons, particularly in goals, learning styles and attitudes, require a variety of means to satisfy the educational needs of individuals. The institutional environment should be responsive to varied needs of the students and other constituencies the institution serves. To this end, the institution is committed to providing educational opportunities through close collaboration with other educational institutions, the private and public sector, government entities, and the various business and industry-based organizations that serve the residents of Oklahoma.

MISSION

OSU Institute of Technology’s mission is to serve as the lead institution of higher education in Oklahoma and the region providing comprehensive, high-quality, advancing technology programs and services to prepare and sustain a diverse student body as competitive members of a world-class workforce and contributing members of society.

VALUES

We value excellence and integrity in people, technology, jobs and learning.

PHILOSOPHY OF GENERAL EDUCATION

General Education at OSU Institute of Technology employs current technology and diverse learning methods to engage students in interactive learning processes. Students are introduced to broad based knowledge, skills, and analytical and evaluative tools needed to lead productive and fulfilling lives in leadership and service to the community. This latitude in learning complements each program to enhance students’ flexibility and, consequently, provide them with more options in the work place.

PHILOSOPHY OF ASSESSMENT OF STUDENT LEARNING

Assessment of student learning at OSU Institute of Technology is an essential part of the enduring process of enhancing and improving curricular and co-curricular student learning. It is driven by the College’s mission and vision statements. Academic divisions determine student learning objectives and then systematically gather, document, analyze, and interpret evidence of student learning. Assessment is one way that departments and programs affirm their strengths and plan improvements that contribute to the College’s overall effectiveness.

INSTITUTIONAL CORE OBJECTIVES

Core objectives are essential, broad-based workplace skills that cut across occupational and academic titles. They are distinguished from program-specific requirements needed for specialization in professional-technical programs and/or academic-transfer plans. The assessment of student learning is held in high regard at OSU Institute of Technology and, in alignment with requirements of The Higher Learning Commission, faculty have developed six core objectives that are wholly integrated in the curriculum. These Core Objectives are:

1. Effectively communicate electronically, verbally, and in writing
2. Demonstrate logical, systematic problem-solving techniques
3. Develop and display a sense of personal, social and professional ethics

4. Explain the cultural heritage and primary elements of the history and government of the U.S. people, especially as it impacts one’s industry or field of study

5. Access and use technology appropriate to one’s industry or field of study

6. Provide opportunities for students to effectively utilize learned technologies and processes to aid various constituencies in the community.

ACCREDITATION

OSU Institute of Technology’s programs of study are approved by the Board of Regents for Oklahoma State University and the A&M Colleges, the Oklahoma State Regents for Higher Education (OSRHE) and the Oklahoma State Accrediting Agency. OSU Institute of Technology is accredited by The Higher Learning Commission (HLC), a Commission of the North Central Association (230 South LaSalle St., Suite 7-500, Chicago, IL 60604-2504; 1-800-621-7440; http://www.ncahlc.org).

SPECIALIZED ACCREDITATION

Nursing - NLNAC

The OSUIT Nursing Program meets the requirements of the Oklahoma Board of Nursing and is entitled to be known as an approved associate degree nursing education program in the State of Oklahoma. The program has been awarded accreditation by the National League for Nursing Accrediting Commission (NLNAC) for achievement of Quality and Excellence in Nursing Education.

O & P – NCOPE/CAAHEP

The National Commission on Orthotic and Prosthetic Education (NCOPE) is the accreditation body for the orthotics and prosthetics (O&P) profession. As such, its primary mission and obligation is to ensure educational and residency programs meet the minimum standards of quality to prepare individuals to enter the O&P profession.

NCOPE serves in cooperation with the Commission on Accreditation of Allied Health Education Programs (CAAHEP) for accreditation of educational programs. CAAHEP is a nationally recognized non-profit organization that accredits educational programs in 22 allied health disciplines.

The CAAHEP system currently accredits over 2,000 education programs across the nation.

Information Technologies (BT) – ABET

ABET is a nonprofit, non-governmental organization that accredits college and university programs in the disciplines of applied science, computing, engineering, and engineering technology.

ABET accreditation, which is voluntary and achieved through a peer review process, provides assurance that a college or university program meets the quality standards established by the profession for which the program prepares its students.

SCOPE

OSU Institute of Technology’s scope is college level, advancing technology curricula and services, co-curricular student life and public service.

Emphasis is placed on:

- Associate degree programs in advancing technologies that fulfill a critical workforce need for technical/professionals;
- General education course work that contributes to the development of critical-thinking lifelong learners, whose interpersonal and communication skills, problem-solving abilities and knowledge of ethics prepare them to be productive employees and citizens;
- Programs and services which aid in the development and retention of students;
- Continuing education and public service programs that meet the needs of Oklahoma citizens;
- Technologically-advanced learning resource facilities and educational infrastructure which meet the needs for academic excellence;
- Student experiences which foster leadership, participation and maturity;
- Recruitment and sustenance of a diverse, qualified faculty and staff;
- Institutional planning program review processes that focus on academic excellence and continuous improvement of support services;
- Strategic alliances partnerships with government, business and industry that serve to enhance the economic development;
- External resources that are required to provide program excellence;
- Accountability through assessment of student learning, competency, satisfaction, exit placement and career success.

GRADUATE PLACEMENT

OSU Institute of Technology takes pride in its highly successful graduates each academic division takes responsibility for working with employers to foster positive employment. Employer information on file reflects a very positive placement at graduation.

DISCLOSURE OF GRADUATION RATES

OSU Institute of Technology, in compliance with the Student Right-to-Know Act, makes available to any enrolled or prospective student its completion or graduation rate. This information is available upon request in the Office of Academic Affairs.

This Catalog offers information about the academic programs and support services of the University. This Catalog is as accurate as possible, but the information may not remain current for all of the academic year. Circumstances may prompt changes in courses, course content, credit, fees, regulations, semester calendar, curriculum, degrees offered, and other University matters. The current and official information may be found on the OSU Institute of Technology web site, http://www.osuit.edu.
Admissions
Office of Admissions
Grady Clack Center
918-293-4680
1-800-722-4471, Ext. 4680
www.osuit.edu/admissions
osuit.admissions@okstate.edu

Admissions Process
When to Apply: It is recommended to apply several months prior to the semester in which the student would like to attend.
How to Apply: Students can apply online on the Office of Admissions website or apply in person at the Office of Admissions.
Submit Documents: Student should submit required documents to the Office of Admissions.

GENERAL POLICIES
All students must meet the criteria for both the high school curricular requirements and the high school performance requirements as defined by OSRHE. The following high school curricular requirements have been established for students seeking admission to Oklahoma colleges and universities:

The 15 units of high school course work required for college admission to public colleges and universities in the State System. The following high school curricular requirements have been established for students seeking admission to Oklahoma colleges and universities.

These include:

- 4 units of English (Grammar, Composition, Literature)
- 3 units of Laboratory Science (Biology, Chemistry, Physics, or any lab science certified by the school district; General Science with or without a lab may not be used to meet this requirement.)
- 3 units of History and Citizenship Skills (including 1 unit of American History and 2 additional units for subjects of History, Economics, Geography, Government, Non-Western Culture)
- 2 additional units of courses that fit into one of the categories above or foreign language or computer science

SPECIAL PROGRAM REQUIREMENTS
Certain programs have restricted admission and enrollment procedures. Admission to OSU Institute of Technology does not guarantee acceptance into any specific program of study. Additional requirements for admission to restricted programs may be obtained by contacting the respective division office.

IMMUNIZATION RECORDS
All new students are required by Oklahoma law to provide evidence of having been immunized against measles, mumps, and rubella, (two shots), and against Hepatitis B, (three shot series). If this information is not received during the student’s first semester, a hold will be placed on future enrollment until the requirement is met. Students may sign a waiver if shot records cannot be provided.

ADMISSION POLICIES & REQUIREMENTS
The admission policies of OSU Institute of Technology are those approved by the Oklahoma State Regents for Higher Education on Admission to and Transfer among Oklahoma Colleges and Universities of the State System.

Students will be admitted in one of the following admission categories:

Admission of First-Time College Students
1. Students Seeking Admission to AS, or Baccalaureate Degree Programs

Any individual who:

a. is a graduate of a high school accredited by the appropriate regional association or by an appropriate accrediting agency of the home state or has achieved a high school equivalency certificate based on the GED;

b. has met the curricular requirements as set forth by the OSRHE policy; and

c. has participated in the ACT test is eligible for admission to OSUIT.

First Time College Students Requirements:
A. Graduates from an accredited high school are eligible for admission provided they:
 a. Submit an Application for Admission
 b. Participate in ACT testing or SAT testing
 c. Submit an official High School transcript, and;
 d. Participate in COMPASS assessment as explained under Academic Profiling.

B. Non-High School Graduates are eligible for admission provided they are 18 years of age or older and their high school class has graduated and they:
 a. Submit an Application for Admission
 b. Participate in ACT testing or SAT testing
 c. Submit official transcripts of previous academic history including GED certificate if taken, and;
 d. Participate in COMPASS assessment as explained under Academic Profiling.
Admission of Transfer Students

A Transfer Student is any undergraduate student with greater than six attempted credit hours, excluding remedial/developmental (zero-level courses) or pre-college work and excluding credit hours accumulated by concurrently enrolled high school students.

A. Admission by Transfer within the State System

Undergraduate students entering OSUIT by transfer from another State System institution must meet both the high school curricular requirements and academic performance standards of OSUIT and must have a GPA high enough to meet the institution’s retention standards based on at least 24 attempted semester credit hours of regularly graded (A, B, C, D, F) college work.

B. Admission by Transfer from Non-State System Institutions

Undergraduate students wishing to transfer from non-State System institutions to OSUIT may do so by meeting the entrance requirements of OSUIT; and also meet the following:

1. Transcripts of record from colleges and universities accredited by the HLC or other regional associations will be given full value.
2. Each nonresident applicant must be in good standing in the institution from which the applicant plans to transfer.
3. Transcripts of record from institutions not accredited by a regional association may be accepted in transfer when appropriate to the student’s degree program and when the receiving institution has had an opportunity to validate the courses or programs.

Transfer Student Requirements:

Individuals who have enrolled in one or more colleges prior to enrollments at OSUIT must provide the following documentation depending upon the number of hours completed at previous colleges.

A. Students with fewer than 24 credit hours:
 a. Submit an Application for Admission
 b. Participate in ACT testing or SAT testing
 c. Submit an official High School transcript and;
 d. Submit an official college transcript from each college attended;
 e. Participate in COMPASS assessment as explained under Academic Profiling.

B. Students with 24 or more credit hours:
 a. Submit an Application
 b. Participate in ACT testing or SAT testing and;
 c. Submit an official college transcript from each college attended;
 d. Participate in COMPASS assessment as explained under Academic Profiling.

Special Admission

Under certain circumstances the institution is allowed to admit students under a special admission category. The OSRHE allow each institution to determine if the student meets one of the following criteria for special admission to the university:

A. Special Non-Degree Seeking Student

Students who wish to enroll in courses without intending to pursue a degree may be permitted to enroll in no more than nine credit hours without submitting academic credentials or meeting the academic curricular or performance requirements of the institution of desired entry. Retention standards will be enforced. Once a student has completed the designated number of hours, the student is required to meet the formal admission or transfer criteria for the institution of desired entry in order to enroll in additional course work.

B. Adult Admission

1. Students who are 21 years of age or older or on active military duty may be admitted based on criteria established at the campus level. Related to the curricular requirements, students admitted under the adult admission category must demonstrate proficiency to the satisfaction of the entering institution in the curricular area the student desires to pursue.

2. Non High School Graduate

Any student who:
 a. is not a high school graduate but whose high school class has graduated; and
 b. has participated in the ACT test is eligible for admission to OSUIT.
 c. is a GED recipient, the recipient’s high school class must have graduated to be eligible for admission.

3. The student must satisfy the high school curricular requirements for the institution to which the student is applying, as certified by the school or for home study, the parent.

C. Home Study or Non-Recognized Accredited or Unaccredited High Schools

An individual who is a graduate of a private, parochial, or other nonpublic high school which is not accredited by a recognized accrediting agency is eligible for admission as follows:

1. The student must have participated in the ACT or SAT test
2. The student’s high school class of his or her peers must have graduated.

Concurrent Enrollment of High School Juniors or Seniors

A high school junior or senior may be enrolled in collegiate level courses provided he or she meets both the admissions and the curricular requirements set by OSRHE. Concurrent students must be able to satisfy all curricular requirements for graduation from high school (including curricular requirements for college admission) no later than the spring semester of their senior year. All concurrent students are required to submit an official High School Transcript and ACT scores along with the signed Concurrent Application.
Admission Requirements of Concurrent High School Students

1. High School Senior:
 A twelfth grade student enrolled in an accredited high school may, if the student meets the requirements set forth by OSRHE, be admitted provisionally as a special student. The ACT score is the composite score without the writing component. The SAT score is the combined critical reading and math scores without the writing component. Minimum standards for OSUIT are ACT/SAT at 42nd percentile OR High School GPA 3.0. Classification of Senior begins the summer after the junior year is completed.

2. High School Junior:
 An eleventh grade student enrolled in an accredited high school may, if the student meets the requirements set forth by OSRHE, be admitted provisionally as a special student. The ACT score is the composite score without the writing component. The SAT score is the combined critical reading and math scores without the writing component. Minimum standards for OSUIT are ACT/SAT at 58th percentile OR High School GPA 3.5. Classification of Junior begins the summer after the sophomore year is completed.

3. Home Study or Unaccredited High School Students:
 Concurrent students who are receiving instruction at home or from an unaccredited high school must be 17 years of age and meet the requirements for high school seniors as listed above or be 16 years of age and meet the requirements for high school juniors as listed above.

Course Enrollment Requirements of Concurrent High School Students

All concurrent students must submit an ACT score. ACT subject scores are used to determine eligibility for enrollment.

Seniors:
Minimum composite score of 19 ACT or 900 SAT OR have a 3.0 GPA on a 4.0 scale AND ACT subject test must be a 19 or higher for the area(s) in which they want to enroll.

Juniors:
Minimum composite score of 21 ACT or 980 SAT OR have a 3.5 GPA on a 4.0 scale AND ACT subject test must be a 19 or higher for the area(s) in which they want to enroll.

Subject tests include English, reading, mathematics and science reasoning. An ACT subject score of 19 in reading is required for enrollment in any subject area other than English, mathematics and science reasoning. Institutional secondary testing may not be used for placement. Also, concurrent students may not enroll in remedial (zero-level) coursework offered by colleges and universities and designed to remove high school deficiencies.

Course Workload for Concurrent High School Students

A high school student may enroll in a combined number of high school and college level courses per semester not to exceed a full-time college workload of 19 semester credit hours. For purposes of calculating workload, one-half high school unit shall be equivalent to three semester credit hours of college work. A student may enroll in a maximum of nine semester credit hours during a summer term without being enrolled in high school classes during the summer term.

COOPERATIVE ALLIANCE AGREEMENTS

OSU Institute of Technology is a participant in a number of Cooperative Alliance Agreements which allow high school and adult students to receive college credit for coursework while they are enrolled at a participating Technology Center, and apply that credit toward an Associate in Applied Science (AAS) degree. Designated within this catalog will be courses and/or programs of study developed specifically for

the Alliances. Students do not pay tuition for these courses but are charged a fee of $8 per credit hour.

Institutions of higher education across the state of Oklahoma have committed to providing student services and career advisement to Technology Center students as a part of this program. The overall goal of the program is to improve student access to higher education and increase the number of students completing college degrees within the state. This will result in a better educated workforce and, ultimately, an improved economic climate in Oklahoma.

BACHELOR OF TECHNOLOGY REQUIREMENTS

Specific academic requirements are in effect for students wishing to enroll in OSU Institute of Technology’s Bachelor of Technology degrees.

ADMISSIONS STANDARDS 2012-2013

Students wishing to undertake a Bachelor of Technology degree are required to meet or exceed the following admissions standards in addition to specific program requirements.

- ACT score of 19 or higher in all subcomponents, or
- COMPASS scores of 81 in Reading, 74 in English, and 45 in College Algebra.

Students may be admitted to a Bachelor of Technology program contingent on completion of an Associate in Applied Science degree or higher and submission of both OSUIT and Bachelor of Technology applications.

TRANSFER OF CREDIT

TRANSFER OF CREDIT FROM DOMESTIC AND INTERNATIONAL INSTITUTIONS

Acceptable transfer credit is evaluated on a course-by-course basis for college-level credit earned at institutions who are fully accredited by any of the recognized six
U.S. regional associations. The evaluation is based on course content, as described in the catalog of the institution.

Evaluation of transfer credit may require documentation such as program requirements and course syllabi to determine acceptable transfer credit courses.

Accreditation is the process used by the State Regents or other entities recognized by the U.S. Department Education (USDE) to ensure postsecondary education providers meet and maintain minimum standards of quality and integrity regarding academics, administration, and related services.

International transcripts, submitted for transfer, must be evaluated by a member agency of the National Association of Credential Evaluation Services (NACES, http://www.naces.org/members.htm). Students must submit both the official college transcript and the evaluation summary prepared by the Evaluation Services Committee to the Registrar’s Office.

Transfer of Credit within the State System

Transfer of Credit from colleges and universities within the State System accredited by the HLC or other regional associations will be given full value.

Uniform Course Numbering within the State System

In order to provide for a more effective and efficient system of the transfer of student’s credits among institutions of Oklahoma higher education, the State Regents adopted the following uniform system of numbering for identification of courses offered at all institutions in the State System.

A course number will consist of four digits as follows:

- The first digit will denote the course level.
- The second and third digits will be used to identify the course within a department.
- The fourth digit will denote the number of semester credit hours of the course.
- Service members may also “challenge” courses and take a proctored exam. Demonstrating mastery will result in advanced placement credit without the need to take the class.

Transfer of Credit from Non-State System Institutions

Transcripts of record from institutions outside the state system will be evaluated based on course content, as described in the catalog of the institution. Evaluation of transfer credit may require documentation such as program requirements and course syllabi to determine acceptable transfer credit courses.

Acceptable transfer credit is evaluated on a course-by-course basis for college-level credit earned at institutions who are fully accredited by any of the recognized six U.S. regional associations.

Transcripts from institutions not accredited by a regional association may be accepted in transfer when appropriate to the student’s degree program and when the receiving institution has had an opportunity to validate the courses or programs.

Transfer of Credit from Military Experience or Service

We have a generous policy for awarding credits for military and work experience, and follow the American Council on Education (ACE) recommendations. We use the following means:

- Evaluation of military transcripts free-of-charge for application to general education and technical class credits. Military specializations are mapped and evaluated for applicability to technical degree programs.
- ACE recommendations for military training and experience, and awarding credit through examinations.
- Credits earned at accredited institutions for higher learning, including those credits transcribed through prior learning assessments, are accepted.
- Council for Adult & Experiential Learning (CAEL) to award prior learning assessment credits for life and work experiences, training, etc.
- DSST, CLEP, AP examinations.

CREDIT FOR EXTRAINSTITUTIONAL LEARNING

Extrainstitutional Learning, also known as Prior Learning Assessment (PLA), is attained outside the sponsorship of legally authorized and accredited postsecondary institutions. The term applies to learning acquired from work and life experiences, independent reading and study, the mass media and participation in formal courses sponsored by associations, business, government, industry, the military and unions. An individual who is currently enrolled can request advanced standing credit through one or more of the following means:

1. Standardized test
 a. The College Board Advanced Placement (AP) Program.
 b. College Level Examination Program (CLEP)
 c. DANTES Subject Standardized Tests (DSST)
 d. Excelsior College Examinations (ECE)

2. Challenge exam
 Proficiency tests are developed and administered by the department responsible for the course offering. Exams may be technical in scope or a nationally normed instrument such as COMPASS. These institutionally prepared examinations over the subject area are given in a supervised setting following institutional guidelines.

3. Transcribed credit
 Degree-relevant extrainstitutional learning credit awarded and transcribed by other accredited institutions.

4. Evaluation of non-college training
 Military Experience-Advanced standing credit for military experience is based on criteria and recommendations contained in publications of the
American Council on Education (ACE). For more information, see page 6.

1. Army/ACE Registry Transcript System (AARTS)
2. Sailor/Marine ACE Registry Transcript (SMART)
3. Community College of the Air Force (CCAF)
4. Coast Guard Institute (CGI)
5. The Defense Activity for Non-Traditional Education Support (DANTES)

5. **Individual student portfolio**
 Individual portfolios using Council for Adult and Experiential Learning (CAEL) or other standardized guidelines.

Advanced Standing Credit

Advance standing credit awarded to a student must be validated by successful completion of twelve or more semester hours of academic work at OSUIT. All credit earned through advanced standing shall be so designated the neutral grades of pass (P) on the transcript following the course entry. All advanced standing credit evaluated institutions awarding credit for Extraintitutional learning must validate credit on a course-by-course basis. Neither the ACT nor the SAT shall be utilized by State System institutions for awarding credit. Credit awarded for extraintitutional learning may be applied to a degree program subject to meeting the requirements of the institution conferring the degree. Credit awards for extraintitutional learning shall not exceed the recommendations of ACE.

ACADEMIC PROFICIENCY

All students at OSU Institute of Technology are required to prove academic proficiency. Academic proficiency determines one’s eligibility to enroll in certain programs of study, or placement in remedial classes during a student’s first semester of enrollment. Students must prove academic proficiency one of three ways:

1. Transferring in credits that prove academic proficiency in a subject area.
2. Submitting ACT test scores that prove academic proficiency with a score of 19 or better in subtest areas.
3. By taking the Compass Assessment and scoring at or above the test area on each component as listed below:
 - Reading Comprehension 81
 - English (Sentence Skills) 74
 - Arithmetic (Pre-algebra) 46
 - Elementary Algebra 68
 - College Algebra 45

Students that do not meet the above requirements will be required to take remedial courses to remove their deficiencies.

REMOVAL OF DEFICIENCIES

Unless otherwise specified by program requirements, students must remove curricular deficiencies within the first 24 semester credit hours attempted. Transfer students are required to remove curricular deficiencies within the first 12 semester credit hours attempted. Students may enroll in collegiate level courses within the deficiency’s discipline area only after the deficiency is satisfied.

NONACADEMIC CRITERIA FOR ADMISSION

In addition to the academic criteria used by institutions in the Oklahoma State System of Higher Education as the basis for student admission, institutions consider the following nonacademic criteria in deciding whether first-time applicants or transfer students should be granted admission:

- The applicant must be advised of the grounds of the denial;
- The applicant must be informed of the facts which form the basis of the denial; and,
- The applicant must be afforded an opportunity to appeal their admission denial before a committee.

If any of said criteria should be present, then the institution shall deny admission to applicants if it decides that the happening of any of the events described indicates the applicants’ unfitness, at the time of application, to be accepted as students at the institution.

If an applicant is denied admission on any of the foregoing grounds, there must be substantial evidence supporting the basis for denial. In addition, the applicant must be afforded adequate procedural safeguards, including the following:
International Admissions

International Student Admission and Admission of Non-native Speakers of English International undergraduate students are required to meet equivalent academic performance standards as domestic students. Additionally, first-time international students for whom English is a second language shall be required to present evidence of proficiency in the English language prior to admission, either as first-time students to the system or by transfer from another non-system college or university. The State Regents adopted this policy to ensure that students will have a reasonable chance to succeed at a higher education institution based on their ability to comprehend, read, and write the English language.

ADMISSION OF INTERNATIONAL STUDENTS

Students must meet one of the standards described below to demonstrate their competency in English. Institutions may not waive this admission requirement as part of the alternative admissions category within the State Regents’ general policy on admission.

A. First-Time International Students

1. Standardized Testing. Students must meet the minimum score set by the State Regents on either the Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS) Examination. Results of the TOEFL taken at international testing centers and special testing centers will be accepted at all State System colleges and universities. Results of the TOEFL administered at institutional testing centers shall not be accepted by colleges and universities other than the administering institution.

2. Intensive English Program (IEP). Students must meet a minimum score set by the State Regents on the TOEFL administered at a special testing center or an international testing center or on the IELTS Examination. In addition, after achieving the required score and immediately prior to admission, successfully complete a minimum of 12 weeks of study at an IEP approved by the State Regents. At least two-thirds of the 12 weeks must be instruction at an advanced level. A list of State Regents’ approved IEPs can be found in the State Regents’ Academic Affairs Procedures Handbook.

3. High School Performance. Undergraduate students must have successfully completed the high school core requirements in or graduate from high school where English is the primary language in a country where English is the primary language and demonstrate competency through the Remediation and Removal of High School Curricular Deficiencies Policy.

B. Transfer International Students

Non-native Speakers of English:

Transfer students who are non-native speakers of English must meet the same transfer admission standards as domestic students, dependent upon their educational background or have attended a college or university where English is the primary teaching language in a country where English is a primary language and that is recognized by professional organizations in the U.S. involved in admissions and international education for a minimum of 24 semester credit hours with passing grades and also meet other transfer requirements.

Student with less than 24 hours from a college or university where English is the primary teaching language in a country where English is a primary language and that is recognized by professional organizations in the U.S. involved in admissions and international education must meet the language requirements for first-time undergraduate students.

International Student Requirements:

Students who require a visa to study in the United States are eligible for admission if they:

• have graduated from high school or secondary school
• can show English proficiency in any of these ways:
 o TOEFL internet-based score of at least 61
 o TOEFL computer-based score of at least 173
 o TOEFL paper-based score of at least 500
 o IELTS score of at least 5.0
 o native English speaker
• have submitted an international application for admission
• can show financial support for the estimated cost of attendance

While there is no formal application deadline please be prepared to start the international admission process several months in advance to allow for formal VISA processing.

ENROLLMENT OF INTERNATIONAL STUDENTS

Enrollment for new international students, whether new to the U.S. college system or a newly-transferred from another U.S. college or university, requires more steps than a student who is renewing enrollment for the next academic term. For assistance or additional information please contact the International Affairs Office at:

Email: international.office@okstate.edu
Phone: +1-918-293-5071

UNDOCUMENTED IMMIGRANTS

In accordance with Title 70, O.S., Section 3242 (2007) (also known as HB1804 of the First Regular Session of the 51st Legislature), an individual who cannot present to the institution valid documentation of United States nationality or an immigration status permitting study at a postsecondary institution, but who has graduated from a public or private high school in Oklahoma, may be eligible for enrollment and resident tuition. The individual must provide the same documentation as a domestic student and is required to file an affidavit of intent with the institution.
To be eligible for enrollment and resident tuition under HB 1804, the undocumented immigrant student must:

A. have graduated from a public or private high school in Oklahoma. (Note: GED or homeschool education will not establish eligibility for any student.);

B. have resided in Oklahoma with a parent or legal guardian while attending a public or private high school in Oklahoma for at least two (2) years prior to graduation;

C. satisfy admission standards, as determined by the State Regents, for the institution in which the student intends to enroll;

D. have secured admission and enrolled in an institution within The Oklahoma State System of Higher Education; and

E. do one of the following:

1. Provide to the institution a copy of a true and correct application or petition filed with the United States Citizenship and Immigration Services to legalize the student’s immigration status;

2. File an affidavit with the institution stating that the student will file an application to legalize their immigration status at the earliest opportunity the student is able to do so, but in no case later than:

 a) one (1) year after the date on which the student enrolls for study at the institution; or

 b) if there is no formal process to permit children of parents without lawful immigration status to apply for lawful status without risk of deportation, one (1) year after the USCIS provides such a formal process.
Assessment & Testing

COMPASS ASSESSMENT

COMPASS is a self-paced computerized assessment of Reading, Math, and Writing skills (English). The COMPASS assessment determines one’s academic proficiency. The assessment can be taken on campus in the OSU Institute of Technology Assessment Center, weekdays between 7:30 a.m. and 1:30 p.m. No appointment is required. Please contact the Assessment Center at 1-800-722-4471 ext. 5248 or ext. 5254 for more information.

The following policy applies to all students taking the COMPASS assessment:

1. All examinations will be coordinated through OSUIT Assessment Center and will cover the following areas: Reading, Math, and Writing (English) skills.
2. Students will be allowed to take the exam (or each component) up to three times.
3. Initial testing must be completed prior to enrollment and retesting must be completed within the first week of the semester. Any changes in students schedule due to retesting must be processed during the first week of the semester. No retesting will be allowed after the fifth day of the semester.
4. Retesting will not be allowed in a subject area after a student has enrolled in a course, earned a grade for the course or withdrawn from the course.

CAREER PROFILING

Comprehensive Career Profiling is available as a free service to help students and prospective students make informed career decisions. Skilled professionals guide the individual through activities to determine values, interests, abilities, aptitudes and personality traits.

After these characteristics are aligned with career areas, the salary, current demand, future outlook of specific jobs can be examined. Also, the educational requirements for a specific job and the colleges in Oklahoma and surrounding states that offer those requirements are delineated.

First-time college students, students transferring from another college and persons changing careers will get valuable insights to assist in making career choices. All results are confidential.

ACT RESIDUAL TESTING

Residual Testing at OSU Institute of Technology (OSUIT) is conducted for students who 1) are enrolled, 2) have been admitted, or 3) are applying to OSUIT and cannot take the ACT on a regularly scheduled national test date because the date does not meet OSUIT’s deadlines. Students who do not plan to attend OSUIT System must not take the Residual ACT on the OSUIT campus.

Oklahoma State Regents for Higher Education Policy

Beginning November 1, 2011, students may only take the ACT Residual test once during the year in which the respective ACT Residual examination is valid (November 1 through October 31) and the test date shall not coincide with a national ACT test date. Students are encouraged to participate in the national ACT test dates (six are offered per year).

ACT Residual testing on the OSUIT campus is available at various times during the year. Check the Assessment Center web page for schedule of test dates.

http://www.osuit.edu/academics/act_dates.html

- Due to limited seating, students should register for the ACT by calling 918-293-5254.
- A picture ID is required for admission to the testing room. Examples of picture ID’s are current drivers license, military ID, etc. We cannot accept picture ID faxed from other institutions, etc.
- Students should arrive by 8:00 AM; the test fee is $35.00 payable at the cashier’s window the day of the test.
- The test begins promptly at 8:30 AM. Absolutely on one will be admitted to the testing room after the timed portion of the test has begun.
- ACT permits the use of calculators on the Mathematics Test. Acceptable calculators include: basic four function, scientific, or graphing calculators. Programmable calculators are not permitted. We do not provide calculators.

No books or other materials will be allowed in the testing area. No food or drink allowed.

GED (GENERAL EDUCATION DEVELOPMENT) EXAMS

The GED test provides an opportunity for individuals to earn the High School Equivalency Certificate. Included in the GED battery of tests are Mathematics, Writing, Social Studies, Science and Reading.

COMPUTER PROFICIENCY REQUIREMENT

OSU Institute of Technology recognizes that many business, industrial, educational, and personal activities involve the use of computers. Therefore, all OSU Institute of Technology graduates will demonstrate competency in the use of a computer to perform one or more of the following functions:

- Word Processing
- Database Management
- Programming
- Spreadsheet Use
- Multimedia/Graphic Design
- Presentations

A student may satisfy the computer proficiency requirement by completing the course CS 1013 “Computer Literacy and Applications” or any other course designated by the academic division as satisfying this requirement.

The following policy applies to all students interested in seeking Advanced Standing credit for CS 1013 Computer Literacy & Applications:

1. All examinations will take place in the OSU Institute of Technology Assessment Center.
Center and will cover the following areas: Windows, Basic Word, Basic Excel, and Power Point. Students may take one or more components per visit to the Assessment Center. However, all components of the exam must be completed within a two-week period.

2. Students will be allowed to take the exam (or each component) once. Note: students who have previously taken Computer Literacy & Applications will not be permitted to seek Advanced Standing in the course.

3. Testing must be completed within the first week of the semester.

For assistance or additional information please contact the Assessment Center at 918-293-5248.

ACADEMIC PROFICIENCY

All students at OSU Institute of Technology are required to prove academic proficiency. Academic proficiency determines one’s eligibility to enroll in certain programs of study, or placement in remedial classes during a student’s first semester of enrollment. Students must prove academic proficiency one of three ways:

5. Transferring in credits that prove academic proficiency in a subject area.
6. Submitting ACT test scores that prove academic proficiency with a score of 19 or better in subtest areas.
7. By taking the Compass Assessment and scoring at or above the test area on each component as listed below:

 Reading Comprehension 81
 English (Sentence Skills) 74
 Arithmetic (Pre-algebra) 46
 Elementary Algebra 68
 College Algebra 45

Students that do not meet the above requirements will be required to take remedial courses to remove their deficiencies.
Registrar

GENERAL POLICIES

ENROLLMENT

Enrollment times are shown on the official school calendar of operation on page i. Additional information can be obtained through the Admissions and Records office. The enrollment process for all new students starts with the Admissions office. The staff provides students with initial career information and academic advisement. Students who are undecided regarding a career choice are referred to the Assessment Center for career exploration services. After enrollment, an advisor works with the student outlining a plan of study and identifying course requirements.

Students are urged to review their information and academic advisement. Currently enrolled students may pre-enroll for the subsequent semester during the final weeks of each semester.

Courses used to fulfill general education requirements are identified by code letters that appear preceding the course title listed in the back of the Catalog. The code letters designate the general education category for which the course may be used.

- Analytical and Quantitative Thought (A)
 The study of systems of logic and the mathematical sciences.
- Humanities (H)
 These courses concentrate on the ideas, beliefs, and arts and literatures that bring cultures to life.
- Natural Sciences (N)
 A systematic study of natural processes and the mechanisms and consequences of human intervention in those processes.
- Social and Behavioral Sciences (S)
 Human behavior in relation to the social and physical environment.
- Diversity (D)
 These courses emphasize socially constructed groups in the United States.
- International Dimension (I)
 These courses emphasize contemporary cultures outside the United States.
- Scientific Investigation (L)
 Laboratory experience aimed at interpreting scientific hypotheses.

Some degree plans require specific general education courses. If no specific course is listed, any general education course with that designation may be used.

Occasionally students transfer a course that appears to fulfill the criteria & goals for a general education course but the transcript does not indicate a general education designation. The advisor may submit a “Substitution” form along with a course syllabus or course description to the Division Chair of Arts & Sciences along with a copy to the Registrar’s Office.

General education courses are also identified in the Student Information System (SIS).

LATE ENROLLMENT

Initial enrollment for a semester will not be permitted after the first three days of classes of that semester. A late fee will be assessed for those students enrolling during the first three days of class.

RESIDENT CLASSIFICATION

A resident of Oklahoma is one who has lived continuously in Oklahoma, not primarily as a post-secondary student, for at least 12 months duration and whose domicile is in Oklahoma. A person’s domicile is his or her true, fixed, permanent home or habitation. It is the place where he or she intends to remain and to which he or she expects to return. When these two occur there is domicile. The burden of proof of residence status or domicile shall be upon the applicant. Students filing an appeal for re-classification of their residence status shall do so on forms provided in the Registrar’s Office.

ADDING OR DROPPING A COURSE

Students may drop a course with the approval of their advisor or the division chair. A Change of Enrollment form must be processed through the Office of Admissions or the Registrar’s Office prior to the drop/add deadline for the process to be complete.

For typical 15-week courses, any course dropped during the first ten business days of classes will have no transcript record. Any course dropped after the first ten days of classes and prior to the end of the eleventh week will result in a grade of “W” being recorded on the student’s transcript. After the beginning of the twelfth week of a 15 week semester, a student may withdraw from a course. A grade of “W” or “F” will be assigned (see definition of grading terms “W”). All deadlines are posted in the Academic Calendar on page “I”.

For courses of shorter duration, the above dates may vary. A course may not be dropped or withdrawn after a grade is assigned.

WITHDRAWING FROM COLLEGE

To completely withdraw from OSU Institute of Technology, a student may initiate the process in Admissions, the Registrar’s Office, or with their academic division office. However, to complete the withdrawal process, contact must be made with the Bursar’s Office, Student Financial Services, Residential Life, Library, and the student’s academic division office. Failure to completely withdraw as required under this policy will result in permanent grades being awarded in all classes in which the student has enrolled. This process ensures that the student is making an informed decision. The last dates to withdraw without academic penalties are listed in the catalog calendar for each semester. Students withdrawing from one or all courses are not eligible for any refunds associated with the cost of education.

AUDITING COURSES

Students auditing a class must obtain approval from the division chair and schedule the class as an audit through the Admissions or Registrar’s Office. Fees for auditing are the same as fees for credit.
OSU INSTITUTE OF TECHNOLOGY

courses. No credit or letter grade will be given for courses audited.

Procedures for auditing a course are administered by the Office of Admissions. No examinations or any other evaluation measures will be required or provided.

Persons auditing courses may not change their enrollment to credit after the add period. Students enrolled in courses for credit may change to audit status only during the period approved for dropping courses.

CLASS ATTENDANCE

Students are expected to attend all class sessions. Students receiving support from government agencies or other sponsors must adhere to policies stipulated by the specific sponsor.

Students who fail to attend classes regularly or otherwise demonstrate a lack of appropriate concern for satisfactory academic progress toward program objectives may be withdrawn from the course(s) and/or the institution.

COURSE LOAD

Students who enroll in 12 or more semester credit hours are considered full-time students. Normally, students may not enroll in more than 19 credit hours in a semester. In special cases, students may be permitted to enroll in a maximum of 22 credit hours. Enrollment in over 19 credit hours must be approved by the Executive Vice President. A typical enrollment at OSU Institute of Technology is between 12 and 18 semester credit hours.

GRADUATION REQUIREMENTS

To be eligible to graduate and receive a degree, a student must submit a graduation application to his or her academic advisor prior to his/her last semester of study or within the first two weeks of the final semester and complete all required courses in their major(s) as listed in the catalog. At least 15 of the final 30 credit hours applied toward the degree must be satisfactorily completed in residence at OSU Institute of Technology, or 50 percent of the major.

The minimum requirements for graduation are as follows:

AAS – 2.0 overall grade point average in all courses listed in the Plan of Study for the major. Some programs may require a higher grade point average.

AS – Overall 2.0 graduation/retention grade point average as shown on the transcript. Some programs may require a higher grade point average.

BT – Overall 2.5 graduation/retention grade point average as shown on the transcript. At least 15 of the final 30 credit hours applied toward the degree must be satisfactorily completed at OSU Institute of Technology. A minimum of 30 hours of resident credit applied toward the bachelor’s degree shall be taken at OSU Institute of Technology. A minimum of 60 credit hours, excluding physical education activity courses, at a baccalaureate degree-granting institution, 40 hours of which must be upper-division course work excluding physical education activity courses.

DEGREES AWARDED

OSU Institute of Technology awards the Associate in Science degree or an Associate in Applied Science degree and Bachelor of Technology degrees in specific disciplines in recognition of successful completion of programs of study.

TRANSCRIPTS OF CREDIT

The Registrar’s Office will provide up to 10 copies of the student’s transcript upon the student’s request. Transcripts will be withheld if the student has outstanding financial obligations to the institution and/or has not completed Direct Loan Exit Interview (if required).

GRADING SYSTEM

Grades are recorded with the letters A, B, C, D, F, I, AU, W, AW, P-NP, P-F or N. The various letter grades and the method of including them in the calculation of grade point averages is shown below. Grades are reported for each student at the closing of each semester.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade Note</th>
<th>Comment</th>
<th>Grade Point per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 - 100</td>
<td>A</td>
<td>Excellent</td>
<td>4</td>
</tr>
<tr>
<td>80 - 89</td>
<td>B</td>
<td>Good</td>
<td>3</td>
</tr>
<tr>
<td>70 - 79</td>
<td>C</td>
<td>Average</td>
<td>2</td>
</tr>
<tr>
<td>60 - 69</td>
<td>D</td>
<td>Below Average</td>
<td>1</td>
</tr>
<tr>
<td>0 - 59</td>
<td>F</td>
<td>Failure</td>
<td>0</td>
</tr>
</tbody>
</table>

OTHER SYMBOLS

I - An incomplete grade may be used at the instructor’s discretion to indicate that additional work is necessary to complete a course. It is not a substitute for an “F,” and no student may be failing a course at the time an “I” grade is awarded. To receive an “I” grade, the student should have satisfactorily completed a substantial portion of the required course work for the semester. When reporting an “I,” the instructor will record in detail the conditions for removal of the “I,” with time limitations not to exceed two semesters. “I” grades not changed by the instructor to a credit-bearing grade or an “F” within the specified time limit will remain as a permanent “I” and not contribute to the student’s GPA.

AU - Audit status is used for the student not interested in obtaining a course grade, but who is enrolled simply to gain course information. The allowable time to change an enrollment status from audit to credit is the last day of the add period for each semester. Students changing their enrollment status from audit to credit must meet institutional admission/retention standards as set by the State Regents. The allowable time to change an enrollment status from audit to credit is the last day of the drop period for each semester. AU will not contribute to a student’s GPA.

W - An automatic withdrawal grade of “W” is issued when a student initiates a withdrawal during the allowable withdrawal period. The withdrawal period for an automatic “W” begins the eleventh day of classes (approximately one-eighth of the session) for classes meeting the full length of regular sessions. The withdrawal period for classes of shorter duration begins the day following approximately one-eighth of the length of the class. The last day for an
automatic “W” is the last day of the eleventh week (approximately seventy-five percent of the class length) for classes meeting the full length of regular sessions. For classes of shorter duration, the last day for an automatic “W” corresponds to the day that coincides with seventy-five percent of the class. For any drop or withdrawal accepted after this deadline, a “W” or “F” will be assigned depending upon the student’s standing in the class. If an “F” grade is assigned, it is calculated in the student’s GPA; the “W” grade is GPA neutral.

AW - Administrative withdrawal may be assigned by the Admissions office to indicate that a student has been “involuntarily” withdrawn by the institution during the designated semester for disciplinary or financial reasons, or for inadequate attendance or otherwise demonstrated lack of appropriate concern for satisfactory academic progress toward program objectives. Such institutional penalties must follow formal institutional procedures. Administrative withdrawals are GPA neutral.

P-NP - An institution may elect to use the grades “P” and “NP” for specified courses or may allow students to elect a “P-NP” option under circumstances specified by the institution. The “P” grade is neutral indicating minimal course requirements have been met and credit has been earned. The “P” grade may also be used to indicate credit earned through advanced standing examinations. The grade of “NP” indicates that a student did not meet minimum requirements in a course designated for “P-NP” grading. While both grades “P” and “NP” are GPA neutral, they are counted in the total number of attempted hours for retention and the total number of attempted and earned hours for graduation.

P-F - An institution may elect to use pass-fail as an option for students in specified courses. The pass grade indicates hours earned but does not contribute to the GPA. The fail grade is an “F” and is calculated into the GPA.

N - An “N” grade indicates that the semester grade was not submitted by the instructor by the appropriate deadline. The “N” grade must be replaced by the appropriate letter grade prior to the end of the subsequent semester. The “N” grade is GPA neutral.

GRADE POINT AVERAGE

Grade point average (GPA) is calculated by dividing the total number of quality points earned by the total number of semester hours attempted. For example, a total of 32 quality points earned in a semester by a student officially enrolled in 16 semester hours of classes gives a grade point average of 2.00 for that semester. Cumulative grade point average is calculated similarly using the sum total from all semesters of all collegiate-level courses attempted at all accredited institutions of higher education. In both cases, the grades “P, W, I, N, AU and AW” will not be used to calculate the grade point average.

GRADE CHANGES

An instructor who reports an incorrect grade to the Registrar may request correction of the error. The request must be in writing on the approved form and must have the approval of the division chair. In no case will the Registrar change a grade after the student has graduated.

HONOR ROLLS

The President’s Honor Roll consists of all students who, upon graduation, have achieved a graduation grade point average of 3.5 or higher. The Registrar’s Honor Roll recognizes all students who have achieved a graduation grade point average of at least 3.5 but less than 3.5.

CHANGES IN DEGREE REQUIREMENTS

Changes in degree requirements at any time, unless otherwise specifically provided, are applicable in full to students entering OSU Institute of Technology thereafter, and applicable to a maximum practicable extent to students having entered previously.

As a general rule, a student may “stop out” for one semester without penalty, as long as that program is active. Students who do not return for two or more semesters will be required to re-enter under the new degree plan.

From time to time, degree programs are deleted. When this happens, active students are given a deadline to complete the program. After the final deletion date for the program, the program is no longer viable. Any student (active or inactive) who fails to finish the requirements by the deadline will have to convert to an active degree program.

STUDENT CLASSIFICATION

Undergraduate students* will be classified according to the following number of credit hours earned:

<table>
<thead>
<tr>
<th>Hours Earned</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 30</td>
<td>Freshman</td>
</tr>
<tr>
<td>31 – 60</td>
<td>Sophomore</td>
</tr>
<tr>
<td>61 – 90</td>
<td>Junior</td>
</tr>
<tr>
<td>91 – N</td>
<td>Senior</td>
</tr>
</tbody>
</table>

* Students enrolled in Associate in Applied Science and Associate in Science degrees are limited to Freshman and Sophomore classification.

STUDENT APPEAL OF THE FINAL GRADE

Upon the completion of a course in which a student is officially enrolled and in receipt of the final grade, a student who feels their grade was incorrectly reported may appeal the receipt of said grade.

- The student will first attempt to resolve the difference of opinion relating to the grade with the faculty person.
- If resolution cannot be obtained through the faculty person, the student should then consult the division chair of the department in which the course is being taught.
- If resolution cannot be obtained through the division chair, a formal appeal hearing may be requested through the Vice President for Academic Affairs. A request for an academic affairs hearing must be submitted in writing, documenting previous attempts for resolution and the rationale for the appeal.
• If justifiable rationale exists for the appeal and proper procedures were followed in requesting the appeal, the Vice President for Academic Affairs will then convene an appeal hearing.

• The academic appeal process must be formally initiated within four months after the grade was assigned or six weeks after a student begins a new semester, whichever comes first, or the grade awarded will be assumed to be correct and an appeal will not be granted.

ACADEMIC REGULATIONS

RETENTION STANDARDS

The Oklahoma State Regents for Higher Education (OSRHE) have adopted a progressive policy concerning satisfactory academic performance. Students failing to maintain an appropriate grade average will be placed on either academic notice or academic probation as a condition of continued enrollment.

ACADEMIC NOTICE

Students attempting 30 or fewer credit hours and having a cumulative grade point average of 1.7 to less than 2.0 will be placed on academic notice. Academic notice is a warning designed to alert a student to the possibility of future academic progress difficulties. Academic notice does not lead to academic suspension.

ACADEMIC PROBATION

Any student whose cumulative grade point average falls below the designated level for a given semester is on academic probation. Academic probation can lead to academic suspension.

Students will be placed on academic probation if they fail to meet the following requirements:

<table>
<thead>
<tr>
<th>Credit Hours Attempted</th>
<th>Cumulative GPA Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30 sem. hours</td>
<td>1.7</td>
</tr>
<tr>
<td>31+ sem. hours</td>
<td>2.0</td>
</tr>
</tbody>
</table>

All courses in which a student has a recorded grade will be counted in the calculation of the grade point average for retention purposes. Any student not maintaining satisfactory progress toward his or her academic objective as indicated above will be placed on probation for one semester. At the end of that semester, the student must have a semester GPA of 2.0 in regularly graded course work or meet the minimum cumulative GPA standard required above, in order to continue as a student. Students not meeting either of these criterion will be immediately suspended and may not be reinstated until one regular semester has elapsed.

ACADEMIC SUSPENSION

Any student who was on academic probation the previous semester and who fails to raise his or her GPA to the required cumulative level or to achieve a 2.0 semester GPA will be suspended from the institution.

ACADEMIC SUSPENSION APPEALS

The Oklahoma State Regents for Higher Education policy for academic suspension appeals is as follows: Institutions have the discretion to establish an academic suspension appeals procedure. Such procedures should allow appropriate discretion in deserving cases. Academic suspension appeal procedures require that the suspended student document any extraordinary personal circumstances that contributed to his or her academic deficiencies. Such events must be highly unusual such as the death of an immediate relative, a serious illness, severe financial distress, or personal crisis. The student must provide appropriate documentation of such circumstances. The appealing student must provide evidence showing how this circumstance was a factor in his or her academic performance.

The student should first gain approval and support for the appeal from the appropriate division chair for the students’ major. The Request for Exception should then be submitted to the Office of Vice President, Academic Affairs no later than three working days prior to the beginning of the desired semester of entry. The Vice President of Academic Affairs will make an administrative ruling relative to the request.

The Office of Academic Affairs is the administrative unit responsible for the academic suspension appeals process. This unit is responsible for coordinating the appeals process and forwarding documentation to the Registrar’s Office for maintaining the official records and producing annual reports.

Policy

Those students who are academically suspended from the institution will be ineligible to enroll for a minimum of one regular semester. However, the human equation involved in such actions dictates that an appeals procedure be afforded suspended students. If students win such an appeal, they will be immediately eligible for readmission. This process is not designed to circumvent Oklahoma State Regents for Higher Education policy on student retention, but rather to allow appropriate discretion in deserving cases.

Procedure

The procedures for a student to appeal an academic suspension decision are as follows:

The suspended student must complete a form describing the extraordinary personal circumstances that contributed to his or her academic deficiencies. Such events must be highly unusual such as the death of an immediate relative, a serious illness, severe financial distress, or personal crisis. The student must provide appropriate documentation of such circumstances. The appealing student must provide evidence showing how this circumstance was a factor in his or her academic performance.

The student should first gain approval and support for the appeal from the appropriate division chair for the students’ major. The Request for Exception should then be submitted to the Office of Vice President, Academic Affairs no later than three working days prior to the beginning of the desired semester of entry. The Vice President of Academic Affairs will make an administrative ruling relative to the request.

The Office of Academic Affairs is the administrative unit responsible for the academic suspension appeals process. This unit is responsible for coordinating the appeals process and forwarding documentation to the Registrar’s Office for maintaining the official records and producing annual reports.
OSU INSTITUTE OF TECHNOLOGY

READMISSION OF SUSPENDED STUDENTS

Students who are academically suspended by OSU Institute of Technology will not be allowed to reenter the suspending institution for at least one regular semester except as noted above. Suspended students can be readmitted only one time. A student who is readmitted on probationary status must maintain a 2.0 GPA each semester attempted while on probation or raise his or her cumulative GPA to the designated level. Should a reinstated student be suspended a second time from the institution, he or she cannot be readmitted to the institution until such time as he or she has demonstrated by attending another institution, the ability to succeed academically by raising his or her cumulative GPA to the retention standards.

REINSTATEMENT OF SUSPENDED TRANSFER STUDENTS

The intent of OSU Institute of Technology is that opportunities be provided for all individuals with the ability and desire to pursue their educational goals. Research indicates that many times students suspended from one institution may succeed in a new academic environment if given the opportunity. Therefore, students who are suspended from other state system institutions may be admitted to OSU Institute of Technology by petitioning the Academic Affairs Office and providing rationale and documentation supporting the request to be admitted without a regular semester lapse. Such admission would be probationary and a minimum 2.0 grade point average must be maintained or retention standards met as outlined in the Oklahoma State Regents for Higher Education policy on Admission To, Retention In and Transfer Among Colleges and Universities of the State System, for each semester the student(s) remain on probation. Appropriate academic services, advisement, counseling and tutorial assistance will be available to facilitate student success.

ACADEMIC FORGIVENESS PROVISION

Circumstances may justify a student being able to recover from academic problems in ways that do not forever jeopardize his/her academic standing. The student’s academic transcript, however, should be a full and accurate reflection of the facts of the student’s academic life. Therefore, in situations which warrant academic forgiveness, the transcript will reflect all courses in which a student was enrolled and in which grades were earned, with the academic forgiveness provisions reflected in such matters as how the retention and graduation grade point average is calculated. Specifically, for those students receiving academic forgiveness by repeating courses or through academic reprieve or renewal, the transcript will reflect the retention/graduation grade point average excluding forgiven course(s)/semester(s). The transcript will also note the cumulative GPA, which includes all attempted regularly, graded course work.

Academic forgiveness may be warranted for the currently enrolled undergraduate students in three specific circumstances:

1. Repeat
A student may repeat courses and have only the second grade earned, even if it is lower than the first grade, counted in the calculation of the retention/graduation grade point average. A maximum of four (4) courses, not to exceed 18 hours, may be repeated in the courses in which the original grade earned was a “D” or “F”. Both grades shall be recorded on the transcript with the earned grade for each listed in the semester earned. If a student repeats an individual course more than once, all grades earned, with the exception of the first, are used to calculate the retention/graduation GPA. Grades of any courses repeated after the first four, or 18 hours, will be averaged with original grades.

2. Academic Reprieve
Academic reprieve is a provision allowing a student who has experienced extraordinary circumstances to disregard up to two semesters in the calculation of his or her retention/graduation grade point average. A student may request an academic reprieve from OSU Institute of Technology using the following guidelines:

a. At least three years must have elapsed between the period in which the grades being requested reprieved were earned and the reprieve request.
b. Prior to requesting the academic reprieve, the student must have earned at least 12 semester credit hours with a GPA of 2.0 or higher with no grade lower than a “C” in all courses.
c. The request may be for one semester or term of enrollment or two consecutive semesters or terms of enrollment. If the reprieve is awarded, all grades and hours during the enrollment period are included. If the student’s request is for two consecutive semesters, the institution may choose to reprieve only one semester.
d. The student must petition for consideration of an academic reprieve according to institutional policy.
e. All courses remain on the student’s transcript, but are not calculated in the student’s retention/graduation GPA. Course work with a passing grade included in a reprieved semester may be used to demonstrate competency in the subject matter. However, the course work may not be used to fulfill credit hour requirement.
f. Students who have been granted academic renewal are not eligible for academic reprieve.

3. Academic Renewal
Academic renewal is a provision allowing a student who has not been academically successful previously and who has been out of higher education for a number of years to reenter college without penalty. Under academic renewal, course work taken prior to a date specified by OSU Institute of Technology is not counted in the
A student may request academic renewal from OSUIT using the following guidelines:

- At least five years must have elapsed between the last semester being renewed and the renewal request.
- Prior to requesting academic renewal, and after the elapsed five years, the student must have earned a GPA of 2.0 or higher with no grade lower than a “C” in all regularly graded course work (totaling a minimum of 12 hours) excluding activity or performance courses.
- The request will be for all courses completed before the date specified in the request for renewal.
- The student must complete the Academic Forgiveness form (available in the Office of the Registrar).
- All courses remain on the student’s transcript, but are not calculated in the student’s retention/graduation GPA. Neither the content nor credit hours of renewed course work may be used to fulfill any degree or graduation requirement.
- Students who have been granted academic reprieve are not eligible for academic renewal.

Student Financial Services

GENERAL POLICIES

Student financial aid awards depend upon two major factors: financial need and the availability of funds. To determine need, an evaluation must be made of the financial circumstances of both the applicant and the applicant’s family.

HOW TO APPLY

The first step in obtaining financial assistance at OSU Institute of Technology is to file a Free Application for Federal Student Aid (FAFSA). Applications are available on the web at www.fafsa.ed.gov. This should be done before March 1st for best results. All federal and state funded financial aid programs listed in this catalog are available to students enrolled in a degree-seeking program at OSUIT.

By completing the Free Application for Federal Student Aid, a degree seeking student at OSUIT may apply for the Federal Pell Grant, the Federal Supplemental Educational Opportunity Grant, the Federal Work-Study Program, the Federal Perkins Loan, the Federal Direct Loans and the Oklahoma Tuition Aid Grant. The Free Application for Federal Student Aid can be filed electronically over the internet (www.fafsa.ed.gov).

Students can obtain more information about various financial aid programs and services by contacting Student Financial Services at 918-293-4684.

STUDENT ELIGIBILITY

To be eligible for consideration for student financial aid through any program, an applicant must meet the following requirements:

- The applicant must be enrolled as a regular student in an eligible program of study leading to a degree or certificate.
- The applicant must meet one of the following criteria:
 - A U.S. Citizen or U.S. National. (This includes citizens of American Samoa, Swains Island and Northern Mariana Islands.)
 - A U.S. Permanent Resident. (Documentation of the Form I-151 or Form I-551 from the U.S. Immigration and Naturalization Services may be requested to prove eligibility for financial assistance.)
 - A citizen of certain Pacific Islands. (Otherwise eligible citizens of the Republic of the Marshall Islands, the Federated States of Micronesia, or the Republic of Palau may receive assistance through Federal Pell Grants, Federal SEOG and Federal Work-Study.)
 - An Eligible Non-Citizen. (Documentation of eligible non-citizen status from the U.S. Immigration and Naturalization Services will be requested to prove eligibility for financial assistance.)
- The applicant must maintain satisfactory academic progress in an eligible program of study.
- The applicant must have a high school diploma, a General Education Development (GED) certificate, or provide proof of completion of a secondary school education in a home school setting.
- Applicant must have a social security number.
- Applicant must sign a statement of educational purpose/certification statement of refunds and default in order to receive federal student aid. A signature warrants that a refund is not owed on a Federal Pell Grant or Federal Supplemental Educational Opportunity Grant, a Federal Perkins Loan, Federal Stafford Loan and that the amount borrowed under those loan programs does not exceed the allowable limits. The student also agrees to use student aid only for educational related expenses.
- Applicant must register, or arrange to register, with the Selective Service. The requirement to register applies to males who were born on or after January 1, 1960, are at least 18 years of age, are citizens or eligible non-
FINANCIAL AID ELIGIBILITY

A student may receive financial assistance for an approved degree program for no longer than the maximum of 150% of the required credit hours for completing that program. Should the maximum number of hours allowed for a degree be exceeded, the student will be suspended from financial aid. A student with extenuating circumstances may appeal to the Office of Student Financial Services to obtain permission to exceed the maximum hours limit.

Additionally, students enrolled in a bachelor degree program must maintain academic progress as outlined in the Satisfactory Academic Progress policy, previously stated in this catalog.

FINANCIAL AID PROGRAMS AVAILABLE

Federal Pell Grant

Federal Pell Grants are available to help undergraduate students pay for their education after high school. For Federal Pell Grant purposes, an undergraduate is one who has not earned a bachelor’s or professional degree. Federal Pell Grants provide a foundation of financial aid to which aid from other federal and non-federal sources may be added. Federal Pell Grants do not have to be repaid.

Oklahoma Tuition Aid Grant Program

OSU Institute of Technology participates in the Oklahoma Tuition Aid Grant program (OTAG) that is sponsored by the Oklahoma State Regents for Higher Education. Applicants must be residents of the state of Oklahoma. Tuition aid grants are made based on demonstrated financial need and are funded with a combination of state and federal funds.

Federal Iraq & Afghanistan Service Grant

A student who is not eligible for a Pell grant, but whose parent or guardian was a member of the U.S. Armed Forces and died as a result of service performed in Iraq or Afghanistan after September 11, 2001, may receive this grant. Students apply by completing the FAFSA.

Federal Supplemental Educational Opportunity Grant (SEOG)

Federal Supplemental Educational Opportunity Grants are available to undergraduate students with exceptional financial need as determined by the Student Financial Services Office. Priority must be given to Federal Pell Grant recipients. Federal SEOG does not have to be repaid.

Federal Work-Study Program

The Federal Work-Study program provides part-time employment for students with financial need who want to earn a part of their educational expenses. As a participant in the Federal Work-Study program, OSU Institute of Technology’s Student Financial Services Office arranges part-time employment for eligible students on campus.

Federal Perkins Loans

The Federal Perkins Loan Program is available to eligible OSU Institute of Technology students who need a loan to help meet educational expenses. Federal Perkins Loans must be repaid beginning nine months after graduation, leaving school, or dropping below half-time (six semester credit hours) status. A separate Federal Perkins Loan Application must be completed.

Federal Direct Loans

Federal Direct Loans are low-interest loans made to students attending OSU Institute of Technology at least halftime. These loans are made by the federal government.

Federal Direct Loans must be repaid beginning six months after graduation, leaving school, or when dropping below half-time (six semester credit hours) status.

The Federal Subsidized Direct Loan is based on financial need. The loan amount will depend on financial need, which the college’s financial aid office will determine.

The Federal Unsubsidized Direct Loan is a student loan that is not based on financial need. The loan amount will depend on the cost of attendance at OSU Institute of Technology and the amount of other aid the student is receiving. The student is responsible for paying the interest on an Unsubsidized Direct Loan while in school; however the student has the option to defer payment of the interest while they are enrolled at least half time.

A separate loan application is required to apply for the Federal Subsidized or Federal Unsubsidized Direct Loan. Instructions for applying for the loan will be in your award letter.

Federal Plus Loans

Federal Plus loans are for parents who want to borrow to help pay for their children’s education. These loans provide additional funds for educational expenses and, like Federal Direct Loans, are made by the Federal Government. Parent PLUS loans are credit-based. Should a parent be denied based on their credit, the student may increase the loan eligibility for the student. For further information on Federal Plus loans contact OSU Institute of Technology’s Student Financial Services Office.

OKLAHOMA’S PROMISE (OHLAP)

We’re committed to helping academically-eligible Oklahoma’s Promise recipients achieve the dream of a college education at OSU. Oklahoma students in grades 8-10 can sign up to participate in the program, previously known as OHLAP and administered by the Oklahoma State Regents for Higher Education (OSRHE). Once you graduate from high school and complete the curricular and conduct requirements for the program, you will
receive funding from Oklahoma’s Promise to cover the cost of tuition at OSUIT.

IMPORTANT UPDATE

Beginning with the fall 2012 semester, all Oklahoma’s Promise recipients will be subject to OSU’s financial aid Satisfactory Academic Progress (SAP) policy. All students receiving Oklahoma’s Promise from that point on must meet this requirement, including students who received the award in previous years and students who have not applied for and/or received federal/state financial aid. If you are ineligible to receive federal/state financial aid as defined by OSUIT’s SAP policy, you will not be eligible to receive Oklahoma’s Promise or HELP funding.

Effective for Oklahoma’s Promise, college students receiving the award for the first time in 2012-13 and thereafter, a minimum college GPA of 2.0 will be required for courses taken through the sophomore year and a minimum college GPA of 2.5 will be required for courses taken during the junior year and thereafter.

This is a change to state policy and not limited to OSUIT.

HERO’S PROMISE

Oklahoma students, who are not already eligible for Oklahoma’s Promise and who lost a military parent in the line of duty since January 1, 2000, may be eligible for a state award with recipient requirements similar to Oklahoma’s Promise. Students can sign up for the award up to age 21, regardless of family income. For more information, contact Oklahoma’s Promise at 405-225-9131 or e-mail at www.okpromise.org.

UNDOCUMENTED IMMIGRANT STUDENTS

Effective November 1, 2007, HB 1804 provides that an individual who is not lawfully present in the United States shall not be eligible on the basis of residence within Oklahoma for any postsecondary education benefit, including but not limited to, scholarships or financial aid, or for resident tuition, except as provided under new law set forth in other provisions of HB 1804 and under the revised State Regents’ policy (3.18.9) which conforms with that new law.

The new legislation identifies two categories of undocumented immigrant students:

Category I

Students enrolled in a degree program during the 2006-07 year or any prior school year who received a resident tuition benefit pursuant to the pre-HB 1804 statute and pre-HB 1804 State Regent’s policy. (Students are “grandfathered” and remain eligible for resident tuition and state financial aid under the pre-HB 1804 law and pre-HB 1804 policy).

Category II

Students enrolling in a postsecondary education institution in 2007-08 and thereafter. These students are subject to the new restrictions under HB 1804 and the State Regents’ policy that became effective November 1, 2007.

OKLAHOMA’S PROMISE FOR UNDOCUMENTED STUDENTS

While students participating in Oklahoma’s Promise also fall into either Category I or Category II, SB 820 provides unique treatment of these students with respect to their eligibility to receive the Oklahoma’s Promise award.

Should you have questions regarding your status, please contact OSU Institute of Technology.

SCHOLARSHIPS

Various types of scholarships may be offered to graduating high school seniors, transfer and adult students interested in attending OSU Institute of Technology and to current OSU Institute of Technology students. Several on and off-campus organizations and individuals also offer scholarships to OSU Institute of Technology students. Students who would like to search for scholarships on the Internet may do so by accessing the Fast-Web site at www.fastweb.com. For further scholarship information, visit our scholarship website at osuit.edu/scholarships.

OTHER FINANCIAL ASSISTANCE

Veterans and students eligible to receive financial benefits under any federal or state rehabilitation programs may receive assistance from the coordinator of agency students. Oklahoma sponsored rehabilitation students are served through the Student Financial Services office.

For further information about student financial aid, contact the Student Financial Services Office, 918-293-4684 or 1-800-722-4471.

SATISFACTORY ACADEMIC PROGRESS

All students attending OSU Institute of Technology are required to maintain satisfactory academic progress toward successful completion of degree requirements. In order to remain eligible for financial assistance, a student must meet the requirements listed below:

1. Not exceed a maximum number of hours to complete the degree program (150% of the total credits required for degree completion) AND
2. Maintain a cumulative Graduation/Retention Grade Point Average as listed below AND
3. Successfully complete at least 75% of the total cumulative hours attempted as listed below. (This includes all courses attempted at any college or university.)

<table>
<thead>
<tr>
<th>TOTAL Hrs Attempted from All Institutions</th>
<th>1 -30 Credit Hours</th>
<th>31 or more Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Graduation/Retention GPA</td>
<td>1.7</td>
<td>ITD/ETD 2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All other programs 2.0</td>
</tr>
<tr>
<td>Percentage of Total Cumulative Hours Attempted (PACE)</td>
<td>75%</td>
<td>75%</td>
</tr>
</tbody>
</table>

Satisfactory academic progress is monitored at the end of each semester.
Students are responsible for knowing their eligibility status at the end of each semester. If you have questions regarding your status, contact Student Financial Services at osuitfinancialaid@okstate.edu.

FAILURE TO MAINTAIN SATISFACTORY ACADEMIC PROGRESS:

A student who exceeds the maximum number of hours allowed for degree completion will be suspended from future financial aid until the reason for the excessive hours can be adequately documented.

A student who either fails to achieve the required cumulative Graduation/Retention GPA or to complete at least 75% of the total hours attempted (PACE), will be placed on financial aid warning for the following semester of enrollment at OSUIT. A student may receive financial aid while on warning, but must meet specific minimum requirements at the end of the warning semester to continue to be eligible.

CONTINUED ELIGIBILITY WHILE ON WARNING:

To continue to receive aid after being placed on warning, a student must:

1. Not exceed a maximum number of hours to complete the degree program (150% of the total credits required for degree completion) AND
2. Achieve the required cumulative Graduation/Retention GPA AND
3. Successfully complete at least 75% of the total cumulative hours attempted at all institutions.

A student on warning has one semester to reach the standards above. If this is not met, the student will be placed on Financial Aid Suspension.

Satisfactory academic progress is monitored at the end of each semester. Students are responsible for knowing their eligibility status at the end of each semester. If you have questions regarding your status, contact Student Financial Services.

FINANCIAL AID SUSPENSION

A student denied assistance based on the Satisfactory Academic Progress Policy can submit a written appeal to the Student Financial Aid Appeals Committee. An appeal form is available in the Grady Clack Center or online on the Student Financial Services website at www.osuit.edu. The appeal should speak in detail to mitigating or extenuating circumstances that affected the student’s academic performance, i.e., severe physical injury, mental trauma, etc. The appeal should include information as to why satisfactory academic progress failed to be met and what has changed that will allow satisfactory academic progress to be met if the appeal is approved. A student is highly encouraged to include supporting documentation of any claims.

A student not eligible for financial aid (Financial Aid Suspension) for exceeding the maximum number of hours allowed for a degree completion should also have the academic advisor complete the “Remaining Hours Required for Degree Completion” form if extenuating circumstances require the student to exceed the maximum hours limit. The form is available in the Grady Clack Center and online on the financial aid website.

The decision of the Student Financial Aid Appeals Committee is final and is communicated to the student in writing. Depending on the timeliness of the appeal, it is possible for a student to have an appeal denied and also not be entitled to a refund of charges if the student chooses to withdraw from classes. A student who enrolls and attends class whose appeal is subsequently denied will be eligible for a refund of charges based solely on the schedule in the Fee/Tuition Refund Policy in the OSUIT catalog.

A student not eligible for financial aid (Financial Aid suspension) for reasons other than exceeding the maximum number of hours for degree completion who does not appeal, or whose appeal is denied, may be reinstated by meeting BOTH of the following criteria:

1. Achieve the required Graduation/Retention GPA or the required Semester GPA AND
2. Successfully complete 75% of the total cumulative hours attempted at all institutions.

These requirements may be met while either attending OSUIT for the semester without financial aid or by transferring work meeting the requirements to OSUIT from an accredited institution. Transfer work must be reflected on the OSUIT Transcript to be considered for purposes of financial aid eligibility.

FINANCIAL AID POLICY ON REPEAT COURSES

OSU Institute of Technology has a Repeat Course Policy that allows a student to repeat a course and have only the second grade earned, even if it is lower than the first grade, count in the calculation of the grade point average.

A student may repeat a previously passed course one time and count it in the enrollment status for financial aid. A student may repeat any failed course until it is passed and it be counted toward enrollment status for financial aid.

DURATION OF FINANCIAL AID ELIGIBILITY

A student may receive financial assistance for an approved degree program for no longer than the maximum of 150% of the required credit hours required for completing that program. Should the maximum number of hours allowed for a degree be exceeded, a student with extenuating circumstances may appeal to the Office of Student Financial Services to obtain permission to exceed the maximum hours limit.

Students are eligible to obtain two degrees at the Associate level and one degree at the Bachelor’s level at OSU Institute of Technology with financial aid eligibility. A student’s financial aid eligibility will terminate after two Associate degrees and one Bachelor’s degree is received.
TRANSFER STUDENTS WHO TRANSFER HOURS

Students who transfer hours and are close to exceeding this limit, should complete the Request to Exceed Maximum Hours form to determine financial aid eligibility.

FINANCIAL AID ELIGIBILITY FOR STUDENTS WITH A PREVIOUS DEGREE

Students who have received an associate’s degree or higher from any institution, may complete a Request to Receive Financial Aid with a Previous Degree form to determine financial aid eligibility.

UNDECLARED, DEGREE SEEKING STUDENTS

In order to allow students to explore their options and still receive a degree within the maximum time frame of 150% of the credit hours required to obtain a degree, a student who enters with less than 24 hours, may enter as an undeclared-degree seeking student for financial aid. The student must follow the guidelines for students with an undeclared program and choose a major by the second semester. Students with more than 24 hours may submit an appeal to the Financial Aid Office to enter as an undeclared major for one semester.

IMPORTANT DATES

Many financial aid programs have limited funding and funds are awarded to the earliest applicants. The ideal time for students to apply for financial aid is as soon as possible after January 1 and before March 1 each year. Applications received after March 1 are subject to the availability of funds.

ATTENDANCE IN CLASS AND FINANCIAL AID ELIGIBILITY

Financial aid is awarded based on enrollment status. Failure to attend course(s) could result in a recalculation of your financial aid.

HOW WITHDRAWING (OFFICIALLY AND/OR UNOFFICIALLY) EFFECTS YOUR FINANCIAL AID

In accordance with 34CFR Sec.668.22, any student at OSU Institute of Technology who completely withdraws from all classes or fails all classes will be subject to the Return of Title IV funds policy.

A student earns financial aid based solely on the length of time he or she has attended the University. Until a student has passed the 60% point of the current trimester, only a portion of the student’s disbursable aid has been earned. The amount of earned aid has no relationship to institutional charges or other incurred costs of attendance. A student who officially withdraws before the 60% point of the enrollment period may, but not necessarily, be required to repay funds to a specific financial aid program. This could leave the student with an unpaid balance.

A student who leaves school and does not notify the school of his or her withdrawal is considered to be “unofficially withdrawn”, because official notification is not provided to the school. As OSUIT is not required to take attendance, the withdrawal date will be calculated at the midpoint of the payment period or period of enrollment, as applicable, or the last date of an academically related activity in which the student participated.

A payment owed but not paid by the student to the financial aid program may result in the inability to receive a transcript or reenroll in classes until the debt is satisfactorily repaid. Examples are available in the Financial Aid Office.

Students are encouraged to visit with a financial aid counselor prior to withdrawing to see how the withdrawal will affect their aid. If the student received less Federal Student Aid than the amount earned, the school must offer a disbursement of the earned aid that was not received. This is called a post-withdrawal disbursement. If the student received more Federal Student Aid than the amount earned, the school, the student, or both, must return the unearned funds in a specified order.

Refunds to financial aid recipients, who withdraw or cease attendance from school, during the refund period, must be returned to the appropriate financial aid accounts. Reimbursement will be made to financial aid accounts, and the student notified by mail, within 30 days from the day the school determines the student withdrew, in the following order:

1. Unsubsidized Federal Stafford Loan
2. Subsidized Federal Stafford Loan
3. Federal Perkins Loan
4. Federal PLUS Loan
5. Federal Pell Grant
6. Federal SEOG Grant
7. Other Institutional or Private Aid Programs
8. The Student.
Bursar

GENERAL POLICIES

PAYMENT OF ACCOUNT

Account balances are due on the first day of class each semester. A 1% monthly service charge will be assessed to any unpaid balance beginning the 15th of the second month of each semester. Accounts must be paid in full to enroll in subsequent semesters. Transcript and enrollment holds will be placed on all student accounts with outstanding balances. Non-payment of any charges could result in litigation or collection procedures. Delinquent account information is reported to credit reporting agencies which could endanger credit ratings. In addition, accounts which are delinquent can be offset by future State of Oklahoma income tax refunds.

Payments may be mailed to OSU Institute of Technology-Bursar’s Office, Grady W. Clack Student Center, 1801 E. 4th Street, Okmulgee, OK 74447. Mailed payments should include the student’s ID number. Visa and MasterCard payments may be made in person, by phone 918-293-4681, or online at http://prodokm.okstate.edu/

Payments by check that are returned as insufficient will be charged back to the student account. A $20 insufficient check fee will be assessed on all returned checks.

SERVICES:

Students with agency sponsorships must provide the Bursar Office with the proper documentation/forms each semester of enrollment to ensure proper credit to the student’s account. This is the responsibility of the student, not the Bursar Office nor the agency. If the agency does not pay the charges that were billed to them, the charges will be transferred back to the student. The student will then be responsible to pay the balance.

Work study pay checks are available at the Bursar Office every other Friday. Refund checks resulting from financial aid disbursements are available each Thursday. A valid OSUIT ID is required to pick up work study checks and refund checks.

All students are encouraged to enroll in direct deposit. Students may enroll for work study direct deposit through Human Resources located across from the Bursar Office. Students may enroll for financial aid refund direct deposit through the Bursar Office.

PAYMENT PLAN

As a service to our students, OSUIT offers the ability to pay your account in three equal payments each semester. Students will need to apply for this service each semester at the Bursar Office.

Terms and Conditions

Students must enroll in the payment plan program each semester. A $20 Payment Plan Fee will be assessed each semester for enrolling in the payment plan. Veterans Services will have the $20 Payment Plan Fee waived. Failure to pay an installment within 10 days of the due date may result in termination of the program and assessment of additional fees.

Payment amounts are based on the balance due after financial aid is deducted. Additional financial aid will reduce the amount of the following payments, but may not be substituted for a payment. The monthly billing statement will reflect the payment amount and the due date for each payment. Monthly billing statements are sent to the students via the student’s OKEY email address.

PARKING PERMIT

Each student and employee vehicle that is parked on campus is required to display a valid parking decal. These decals may be obtained at the Bursar’s Office. Decals are valid from September to August. The first decal is issued at no charge. Replacement decals are $15.

Cost of Attendance

The required fees and nonresident tuition for OSUIT are established by the Oklahoma State Regents for Higher Education. Fees do not include the costs of individual textbooks, tool kits, uniforms, or other materials which vary according to the student’s program of study. Students who enroll in programs of study that require individual tool kits, uniforms, or other materials will obtain these items as specified by the department. In most cases these items can be purchased through the institution. The costs will vary from program to program and are subject to change without notice.

Incidental and personal expenses for items such as clothing and entertainment will vary with the individual student.

Oklahoma Resident

<table>
<thead>
<tr>
<th>TOTAL PER SEMESTER CREDIT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUR</td>
<td>$140.50</td>
</tr>
</tbody>
</table>

Non-Resident

<table>
<thead>
<tr>
<th>TOTAL PER SEMESTER CREDIT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUR</td>
<td>$317.50</td>
</tr>
</tbody>
</table>

**Non-resident tuition is calculated by adding the Non-Resident tuition of $177 to the Oklahoma general enrollment tuition and fees of $126.50. Non-Resident fee waivers are applied only to the Non-Resident portion of a student’s tuition charges.

Additional Fees (Per Credit Hour)

<table>
<thead>
<tr>
<th>Fee</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remedial Supplementary Fee</td>
<td>$18.50</td>
</tr>
<tr>
<td>Advanced Standing Examination Fee</td>
<td>$5.00</td>
</tr>
<tr>
<td>Late Enrollment Fee</td>
<td>$10.00</td>
</tr>
<tr>
<td>Off-Campus Electronic Media Fee</td>
<td>$25.00</td>
</tr>
</tbody>
</table>

Please note: Additional lab fees may apply to specific programs. Tuition and fees will vary based on program and are subject to change without notice.

All charges are due by the first day of class each semester. A finance charge of 1% per month will be assessed on delinquent accounts.
FEE/TUITION REFUND POLICY

Fee/tuition refunds are made to those students who withdraw completely from OSU Institute of Technology in accordance with Oklahoma State Regent’s policy.

TOTAL FEES/TUITION will be reduced by: 100% if PROPER WITHDRAWAL is made during the first (two) 2 weeks; NO REDUCTION after the 2nd week of the semester.

Fee/Tuition refunds also may be made for individual courses dropped within the first (two) 2 weeks of the semester for full semester courses. The above refund schedules apply to 15-week courses. For courses of shorter duration, check with Admissions for refund schedule.

Students who enroll in a course(s) and do not attend/participate by the conclusion of the refund period for that course will be billed for the course. Students must drop within the first two (2) weeks of the semester in order to receive a refund and not be charged for the course.

NONCREDIT COURSES dropped prior to the first class meeting will be fully refunded. No refund will be given after the first class meeting.

Students with courses scheduled to meet less than the full fifteen-week semester will have adjusted refund periods based on the beginning date and length of the individual course(s).

The Bursar office hours are Monday through Thursday, 7:30 AM to 5:00 PM and Friday, 7:30 AM to 4:30 PM. The Bursar staff may be reached by telephone at 918-293-4681.

Information regarding tuition and fee costs may be found online at http://www.osuit.edu/admissions/tuition_and_fees.php. Room and board costs are online at http://www.osuit.edu/campus_community/residential_life/costs.php.

Academic Services

GENERAL POLICIES

STUDENT PRIVACY RIGHTS

As required by the Family Educational Rights and Privacy Act of 1974, OSU Institute of Technology advises students of their privacy rights. OSU Institute of Technology may disclose information to parents of students in two ways:

1. By obtaining the student’s written consent, if the student is independent.
2. By having the parents sign an affidavit establishing the student’s dependency as defined by Internal Revenue Code of 1954. This form is available in the Registrar’s Office upon request.

Students of OSU Institute of Technology have the right to:

1. inspect and review information contained in their educational records,
2. challenge the contents of their educational records,
3. hold a hearing if the outcome of their challenge is not satisfactory,
4. submit an explanatory statement for inclusion in their educational record if the outcome of their hearing is unsatisfactory,
5. prevent disclosure, with certain exceptions, of personal information from their educational record,
6. secure a copy of the institutional policy, which includes the location of all educational records.

OSU Institute of Technology has declared the following to be open directory information:

1. student’s name, local and permanent address or hometown,
2. student’s telephone number and electronic (e-mail) address assigned/provided by the institution or provided to the University by the student,
3. student’s year of birth,
4. program(s) of study engaged,
5. dates of attendance at OSU Institute of Technology,
6. degrees, honors, and awards granted or received and dates granted or received,
7. academic classification such as 1st year, 2nd year, etc.,
8. Status (full-time/part-time),
9. most recent educational institution previously attended,
10. advisor,
11. participation in official organizations and activities,
12. parents’ names and addresses (city, state and zip only).

STUDENT RIGHTS AND RESPONSIBILITIES

By enrolling at OSUIT, students become members of an academic community in which self-discipline and respect for the rights and privileges of others is essential to the educational process. Therefore, students take on the responsibility to observe and help maintain standards of personal behavior that are a positive contribution to the academic community. OSU expects students to accept responsibility for compliance with all University policies and contracts (including financial obligations to the University), to show respect for lawful authority, to represent themselves truthfully and accurately at all times, and take responsibility for their actions, and actions of their guests. Students may be held accountable for the violations of local, state, and federal laws on campus and for law violations that occur off campus that affect the University community or the University’s mission.

The purpose of the document, Student Rights and Responsibilities Governing Student Behavior, is to inform the student body of the standards of behavior expected of students in the OSU community, the processes in place for enforcing the rules, and the University’s response to violations. The University makes this document available on the website at http://www.osuit.edu/academics/forms/student_rights_responsibility.pdf. Additionally, printed copies are available in the following offices: the Academic Affairs Office, Residential Life, Student Conduct, and the Residential Life Office in each Residence Hall.

ACADEMIC ADVISORS

Each student with a declared major is assigned an advisor who can help make decisions concerning course load and course selection. The advisor also helps with plans of study, career goals and transfer options. The advisor must sign
enrollment forms, drop-and-adds and withdrawals. Students are urged to meet with their advisor each semester. Advisors are assigned by academic division chairs. Students with undecided majors will continue to enroll in classes through the Admissions Office.

COUNSELING SERVICES

Faculty may encounter students in their classes in need of counseling. A licensed professional counselor (LPC) is available for individual and group mental health counseling, advocacy education and other related serves to students. Referrals may be made to the Counselor for students to receive assistance in areas such as personal crisis involving physical, emotional, or financial problems. These counseling services are free to all current OSU Institute of Technology students and their immediate families.

Although every effort will be made to accommodate an individual’s schedule, appointments are usually necessary for counseling sessions. Counseling sessions are confidential with a few exceptions which include a court order, health and safety emergencies, imminent danger to oneself or others, mandated sanctions and child or elder abuse.

In addition, the Counselor also takes responsibility for the advisement of career opportunities as it relates to student recruitment and retention, and may be available to deliver classroom workshops on these and similar topics. The counselor may be reached at 918-293-4988 or visit the website at http://www.osuit.edu/counseling/.

SERVICE LEARNING

Service learning is a special form of community service designed to promote student learning and development. Optional service learning opportunities stimulate academic performance, increase students' understanding of the responsibilities of living in a democratic society and encourage students to become involved in the social problems facing their communities. Whether students “learn to serve” or “serve to learn”, the service learning component is a valuable tool for academic growth and success.

SERVICES TO STUDENTS WITH ACADEMIC/PHYSICAL ACCOMMODATION

Director for College Readiness and Academic Accommodations
918-293-4622
LASSO Center, Noble Center, Room 308

OSU Institute of Technology is committed to providing equal access to otherwise qualified students with disabilities in compliance with Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act of 1990. Equal access is most commonly provided through reasonable academic accommodations/adjustments in the classroom or physical modifications to make classrooms and other learning environments accessible.

Definition

A student may be eligible to receive reasonable accommodations if they have a disability and are otherwise qualified to enroll or participate in an OSUIT course or program. Current disability legislation defines an individual with a disability as someone who:

- Has a physical or mental impairment which substantially limits one or more major life activities,
- Has a record of such impairment, or
- Is regarded as having such impairment.

Additionally, students may be considered “otherwise qualified” and covered under current disability legislation if, with or without reasonable accommodations, they meet the same academic, professional, technical and behavioral standards as those without disabilities.

Policies and Procedures

It is the responsibility of each student who desires reasonable accommodation at OSUIT to identify themselves as an individual with a disability and to make a request for accommodation through the Director for College Readiness and Academic Accommodations. The Director will then meet with the student to discuss the requirements of a student’s selected course or degree program and appropriate accommodations. Students must also provide documentation of their disability before accommodations are approved. (Documentations must originate from a medical or licensed professional and issued within the last three (3) years.)

Once accommodations are approved, the Director will work with the student to develop an accommodation plan, a document certifying (but not specifically disclosing) the student’s disability and the reasonable accommodations to be provided for each course. It should be noted that students remain responsible for fulfilling all other university academic conduct requirements despite receiving accommodations, and students must visit with the Director to develop new Access plans for each semester they would like accommodations.

While there are many options for reasonably accommodating a student, OSUIT strives to preserve essential course/degree requirements and to maintain a safe learning environment for the benefit of all students. As such, reasonable accommodations are considered those that provide equal access to disabled students without:

- Making a substantial change to essential course/degree requirements
- Posting a direct threat to the health or safety of others
- Posing an undue financial or administrative burden on the University

It is the student’s responsibility to inform each of their instructors that they have an accommodation letter on file. Accommodation letters are contained in a
secure folder on the "I" Drive. The file contains accommodations only and is limited to instructor access. No confidential information is contained within the file. Students must report to the Accommodations Office each semester to sign paperwork.

Student Disability Policies and Information can be accessed at: http://sds.okstate.edu/index.php?option=com_content&view=article&id=390&Itemid=6

COLLEGE READINESS CENTER

The College Readiness Center uses a hands-on, applied approach to instruction in college preparatory classes. Included in instruction are hands-on materials, large and small group activities, and continuous discussion of topics. Every effort is made to present each skill using the three learning styles: visual, auditory, and kinesthetic. Contained within this learning community, is the Learning and Student Success Opportunity Center (LASSO). The LASSO Center provides students special tutoring assistance for most OSU Institute of Technology courses and Compass test preparation. The LASSO Center also provides preliminary ACT and compass tutoring and summer services camps in an effort to eliminate the student’s need to enroll in college preparatory courses.

LIBRARY

The Library offers both a virtual and physical place for students to locate information by providing access to a collection of electronic and print materials. Students may find information from books, periodicals, electronic resources, videos and the Internet. Students may use the Library as a place to study, read, locate information, receive instruction and complete class assignments.

Reference service is provided both online and physically to assist students with locating information.

Interlibrary Loan is offered as a service by the Library to obtain materials not readily available on campus. Other services available include photocopy, fax, scanning, lamination, wireless access, color printer, and Jah Jah’s Coffee Café.

DISTANCE LEARNING

OSU Institute of Technology is a hub site on OneNet, the statewide fiber optics backbone administered by the Oklahoma State Regents for Higher Education. This advanced broadband infrastructure allows the institution to send and receive courses through ITV format as well as provide courses in an internet-based format.

OKEY ACCOUNT INFORMATION

The OKEY system is the key to all the various OSU online student services. It gives students the login information they need to access OSU’s online systems, including email, the Desire2Learn Online Classroom, Web for Students, and the free Microsoft Software website. To set up an OKEY account, visit http://okey.okstate.edu

STUDENT EMAIL

All currently enrolled OSU Institute of Technology students are given an OSU email address. To select an email address, students should first set up their OKEY account at http://okey.okstate.edu. To check email, go to http://mail.okstate.edu.

WEB FOR STUDENTS

Web 4 Students is the OSU Institute of Technology online student information system. The system allows students to access their grades, enroll for classes, view transcript information, print class schedules, pay tuition online, view and update personal information, view financial aid information, and much more. The system is available at http://prodokm.okstate.edu.

MICROSOFT CAMPUS AGREEMENT

OSU has an agreement with Microsoft that allows currently enrolled OSUIT students to receive free software ranging from the latest version of Microsoft Office to the Windows operating system. To log into the free software website, students should first set up their OKEY account at http://okey.okstate.edu and then log in with their OKEY email address and password.

To access the free software website, go to http://it.okstate.edu/mca.

DESIRE2LEARN ONLINE CLASSROOM

The Desire2Learn Online Classroom is OSU Institute of Technology’s online course management system. Many instructors will use the Desire2Learn Online Classroom to post assignments, conduct group discussions, administer tests, and post grades. To log into Desire2Learn, students must first set up their OKEY account at http://okey.okstate.edu and then they will be able to log in with their OKEY email address and password. The Desire2Learn Online Classroom is accessible at http://oc.okstate.edu.

ONLINE COURSES

OSU Institute of Technology offers online courses in a variety of subjects. These courses are delivered over the Internet, with little or no on-campus participation required. Some courses require students to complete an orientation prior to enrolling. The instructor will notify the students if the orientation is required. A $25 per credit hour Electronic Media Fee will be assessed students enrolled in any designated Distance Learning and/or online course. To learn more about online courses; including enrollment, instructions for access, and a current list of courses, visit http://www.osuit.edu/academics/online.

COMPUTER LABORATORIES

OSU Institute of Technology has a variety of computer labs available across campus. The Library has an open access computer lab for all students. Both PC and Mac platforms are available with a variety of software including specific program-related applications. Hours may vary according to semester. Call 918-293-5384 or 918-293-5080 for more information.

Additional computer labs are located in the Wilson Commons, Donald W. Reynolds Technology Center, and Noble Center for Advancing Technology, as well as in most of the academic instructional areas. Hours of availability may vary due to scheduled classes. Contact the appropriate academic division office or an instructor for more information.
information regarding use of these facilities. For more information, visit https://www.osuit.edu/campus_community/cis/labs.php.

VETERAN/MILITARY SERVICES

YELLOW RIBBON

OSUIT has partnered with the Department of Veterans Affairs as a member of the Yellow Ribbon Program. This program provides additional assistance to Veterans or their designated transferees that are considered non-resident students at OSUIT. Participants must be eligible to receive the maximum benefit rate (based on service requirements). For more information and to apply please visit the Veteran Service page at http://www.osuit.edu/admissions/veterans_affairs.html.

SERVICE MEMBERS OPPORTUNITY COLLEGES

The SOC is a consortium of over 1900 institutions pledged to working with service members and veterans earning degrees while pursuing demanding, transient careers. As a member, OSU Institute of Technology is committed to easing the transfer of relevant course credits, providing flexible academic residency requirements and crediting learning from appropriate military training and work experiences. SOC is sponsored by fifteen national higher education associations. The military services, the National Guard Bureau and the Office of the Secretary of Defense serve as cooperative agencies.

STUDENT ORGANIZATIONS

More than twenty organizations on campus give students the opportunity to develop leadership skills. Club memberships are open to all students. For a complete listing of OSU Institute of Technology’s clubs and organizations, go to: http://www.osuit.edu/campus_community/student_life/clubs.php.

PHI THETA KAPPA

Phi Theta Kappa has recognized academic excellence in the two-year college since 1918 and has become the largest and the most prestigious honor society serving two-year colleges around the world. Membership is based primarily upon academic achievement. Invitation to membership may be extended by OSU Institute of Technology’s President after one has completed 12 hours and earned a GPA of 3.5 or greater. Membership in Phi Theta Kappa Honor Society will open new doors for one’s academic journey. The organization offers a myriad of opportunities such as $35 Million in Transfer Scholarships, intellectual enrichment and personal development through programs based on Phi Theta Kappa’s three hallmarks of Scholarship, Leadership, and Service.

STUDENT SENATE

The Student Senate is made up of representatives from each academic department, selected residence hall groups and commuter students. Membership in the Senate is open to any full-time student enrolled at OSU Institute of Technology subject to the requirements indicated in the constitution. Four officers are elected by the student body at large: a president, vice-president, secretary and treasurer. The Student Senate promotes activities and programs, which contribute to the betterment of the student body.

BREATHE EASY©

OSU Institute of Technology is a Tobacco-Free campus (effective July 1, 2010).

The health and safety of faculty, staff, students and visitors is a top priority for OSUIT. The Surgeon General of the United States has determined that tobacco use is the nation’s leading preventable cause of premature death and disability, and as such, OSUIT made the decision to become a Tobacco-Free campus on July 1, 2010.

Educational programs will be provided throughout the year and cessation assistance is available.

CAMPUS FACILITIES

STUDENT UNION

Located in the center of campus, the Student Union houses a Cafeteria, Bookstore, Post Office, Copy Center, and Campus Health Services. In addition, the Student Union has three lounges available for use. The PSO Lounge has an attached solarium and both indoor and outdoor seating. Students use the PSO Lounge as a meeting place in between classes or as an alternative eating location. The Viersen and ONG Lounges, more removed from activity, is quiet and perfect for studying or quiet conversation.

THE CAMPUS BOOKSTORE

The Bookstore maintains a stock of OSU and OSUIT Spirit items, small gift items and OSU clothing in addition to tools and supplies needed for classes. The Bookstore is open Monday through Friday, 7:30 a.m. to 4:30 p.m., with extended hours at the beginning of each semester.

THE ONLINE BOOKSTORE

Students can order or rent books, supplies, and many other items online and have them delivered at home, or pick them up from the OSU Institute of Technology bookstore. The online bookstore is accessible at http://www.osuit.edu/bookstore.

CAMPUS FOOD SERVICES

The Student Union Cafeteria includes a soup and salad bar, hot entrees, fresh vegetables and accompaniments, desserts, a grill for cooked-to-order hamburgers, a sub style sandwich bar, convenience foods and a wide variety of beverages.

UNIVERSITY MARKET CONVENIENCE STORE

The University Market Convenience Store is located in the commons area of the campus residence halls. Freshly made sub style sandwiches and wraps, freshly cooked pizza, and freshly made pastries are only a few of the choices available to students and guest. In addition, laundry supplies and...
toiletries are available through the University Market Convenience Store. The declining balance accounts and cash are accepted for food items and toiletries; cash only for nonfood purchases. The University Market Convenience Store hours are the following:

- Monday – Friday: 7:00 am – 10:00 pm
- Saturday – Sunday: 3:00 pm – 10:00 pm

STATE ROOM & TECH ROOM DINING

The State Room restaurant and The Tech Room dining room, located in the Culinary Arts building north of the Student Union, offer a unique dining experience. Cuisine is prepared by Culinary Arts Students. Please call the message line, 293-5010 and someone will call back regarding reservations. Individuals may also email okm-dining@okstate.edu.

CAMPUS HEALTH SERVICES

Students may obtain medical advice from the college physician or nurse practitioner. Students who need hospitalization, x-rays or lab work are referred to the Okmulgee Memorial Hospital and must pay for the cost of the services received. The college physician and nurse practitioner can write a prescription to the pharmacy of the student’s choice but the student is responsible for payment. The OSU Institute of Technology Infirmary, located in the Student Union, is open Monday through Friday when school is in session, from 11:30 a.m. until the doctor has seen all patients who are waiting Tuesdays and Fridays from 9:00 AM to 4:00 PM.

Students are advised to carry health insurance while in school. Several national insurance companies offer low-cost group medical insurance coverage for college students. More information concerning student health insurance plans is available through the Campus Health Services.

COPY CENTER

The Copy Center, located in the Student Union, offers duplicating, collating and binding services to the campus. A black and white copier or a color copier is available for your copy needs. The Center has a wide selection of paper from which to choose for projects ranging from resumes and reports to formal presentations. All services must be paid for when orders are placed. Phone: 918-293-4619.

MAIL SERVICE

OSU Institute of Technology operates a contract postal station located on the southwest end of the Student Union next to the Student Union Bookstore. Window service hours are Monday through Friday from 9:30 a.m. to 4:15 p.m. and Saturday from 9:00 a.m. to 10:00 a.m. except on University or U.S. holidays. The lobby remains open during building hours. Normal post office services are available except for C.O.D. and money orders. Students receive mail on campus either through a campus post office box, general delivery or a residence hall box. Boxes can be rented for a small charge per semester with the charge being based on box size. Box assignments and rental payments are made at the Campus Post Office. General Delivery mail must be picked up at the post office window. Students living in the residence halls receive their mail in their residence hall. Students living in England and Hannigan Hall are encouraged to obtain a post office box. Questions concerning campus postal services should be directed to the Campus Post Office at 918-293-4980.

STUDENT ID CARDS

As part of the enrollment process, each new student is issued a photo identification card. This card is used to establish the student’s identity at OSU Institute of Technology and authorizes access to certain campus facilities and services. The card should be carried by the student at all times for identification. There is no charge for the first card. A fee of $15 is charged for replacement cards.

RECREATION/ATHLETIC FACILITIES

Covelle Hall houses a gymnasium with a regulation size basketball court, volleyball court, two racquetball/handball courts, a weight room, an aerobic area, auditorium, men’s and women’s locker rooms and a coed sauna. Students with a current student ID and/or spouse and children (under the age of 21) are eligible to use the facilities and to check out the equipment. Children under the age of 16 must be accompanied and supervised by a parent.

Outdoor facilities include a softball field, a flag football field, three basketball courts, and the Recreational Trails System which includes a 1.5 mile exercise trail and a 1/4-mile observation garden trail.

CHILD CARE CENTER

The OSU Institute of Technology Child Care Center is located on the Southwest corner of campus and open Monday through Friday from 6:30 a.m. to 5:30 p.m. Students may enroll their children (ages 6 weeks to 13 years) in the campus Child Care Center. The OSU Institute of Technology Child Care Center is in compliance with fire, health and licensing standards required by the Oklahoma State Department of Human Services, and participates in the Oklahoma State Department of Education Child Nutrition Program.

Weekly Fee Rates

<table>
<thead>
<tr>
<th>Age of Child</th>
<th>Full-Time: 4 Hours (+)</th>
<th>Part-Time: 4 Hours (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 24 mos</td>
<td>$95.00/wk</td>
<td>$75.00/wk</td>
</tr>
<tr>
<td>25 to 60 mos</td>
<td>$85.00/wk</td>
<td>$65.00/wk</td>
</tr>
<tr>
<td>61 mos to 13 yrs</td>
<td>$75.00/wk</td>
<td>$55.00/wk</td>
</tr>
</tbody>
</table>

Before and after school care is available for up to 1-1/2 hours before school and up to 1-1/2 hours after school at a rate of $40.00 per week.

Drop in Child Care is offered, if space is available, on an occasional basis at the following rate:

<table>
<thead>
<tr>
<th>Age of Child</th>
<th>Full-Time: 4 Hours (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 24 mos</td>
<td>$24.00/day</td>
</tr>
<tr>
<td>25 to 60 mos</td>
<td>$20.50/day</td>
</tr>
<tr>
<td>61 mos to 13 yrs</td>
<td>$14.00/day</td>
</tr>
</tbody>
</table>
If you have any questions concerning the OSU Institute of Technology Child Care Center, please contact the center manager at 918-293-4934.

CAMPUS LAUNDRY

Credit and coin-operated laundry facilities are located in the small building between the Student Union and Hannigan Hall, and on the first floor of the campus residence halls (Miller-Kamm North and Miller-Kamm South). Campus laundry facilities are open 24 hours a day, 7 days a week.

RESIDENTIAL LIFE AND FOOD SERVICES

Full time (minimum 12 hours) freshmen students are required to live on campus for two semesters unless they have dependents, are 21 years of age or over, married, or live within a 50-mile commuting radius. Residing on campus is considered a fundamental part of a student’s educational experience. On-campus single student housing and apartments are safe, convenient and affordable. OSU Institute of Technology offers students a living-learning environment that complements each student’s academic goals.

Students making application for campus housing are encouraged to apply early. To reserve space in campus housing students must make a deposit of $150 ($500 for family apartments). The housing contract is for two semesters. All of the housing facilities are complete with free Internet access, cable access, and local phone service. Students living on campus participate in one of four on campus meal plans, depending on individual needs. Students select a 10-meal, 15-meal, 20-meal or a declining balance meal plan for use at campus food services, which include the Student Union cafeteria and the University Market convenience store. These meal plans may be used at the State Room and Tech Room in Culinary Arts.

For complete information concerning living on campus and to receive a contract or arrange a tour, contact the Residential Life Office at 918-293-5280 or 918-293-4928 and via email at missy.morland@okstate.edu or devin.debock@okstate.edu.

STUDENT LIFE

The Student Life Department plans, promotes and implements quality programs and activities that serve student’s interests. The Department provides a wide range of social, recreational, cultural and civic activities to students at no cost. Student Life also works closely with student organizations and serves as advisor to these organizations by providing information concerning their constitution and by-laws, membership and issues concerning college policy.

OSU Institute of Technology students may request an official OSU Institute of Technology Activities Transcript their last semester through the Student Life office. The Activities Transcript is an official record of the out-of-class, extracurricular activities and accomplishments of students. Student Life, “Friends, Fitness and Fun!”

PETS

For reasons of health and safety, pets are not permitted on the OSU Institute of Technology campus, in residence halls or motor vehicles.

BICYCLES/RECREATIONAL ITEMS

Bicycles, skateboards, Frisbees, roller skates, etc., may not be used in any building on campus including residence halls and hallways. Also, in accordance with the fire code, bicycles and motorcycles may not be stored in hallways, lounges, stairwells, or doorways.
Regents’ Resolution on Disruptive Conduct

Be it resolved by the Board of Regents of the Oklahoma State University that this statement known as “Emergency Disciplinary Procedure in Cases of Disruption to the University’s Educational Process” containing the following provisions be enacted.

A. Definition of Disruptive Conduct

Oklahoma State University Institute of Technology has long honored the right of the individual to free discussion and expression, peaceful demonstration and petition and peaceful assembly. That these rights are a part of the fabric of this institution and of the nation as stated in the Bill of Rights is not questioned. They must remain secure. It is equally clear, however, that in a community of learning willful disruption of the educational process, destruction of property and interference with the rights of other members of the community cannot be tolerated.

B. Responsibility of the Student

Any student, who willfully by use of violence, force, coercion, threat, intimidation or fear, obstructs, disrupts or attempts to obstruct or disrupt, the normal operations or functions of the University or who orally or in writing advises, procures or incites others to do so shall be subject to dismissal from the University.

The following, while not intended to be exclusive, illustrates the offenses encompassed herein: occupation of any university building or part thereof with intent to deprive of its use; blocking the entrance or exit of any university building or corridor or room therein; setting fire to or by any other means substantially damaging any university building or property, or display of or attempt or threat to use, or use of firearms, explosives, other weapons or destructive means or devices, except as necessary for law enforcement, in any university building or on the university campus; prevention of convening, continuation or orderly conduct of any university class or activity or of any lawful meeting or assembly in any university building or on the university campus; inciting or organizing attempts to prevent student attendance of classes; and, interfering with or blocking normal pedestrian or vehicular traffic on the university campus.

C. Responsibility of the President

When it appears that there is a violation of Section A or B, it shall be the duty of the President, (and he is fully authorized to act) to take all steps which he deems advisable to protect the assumed and designated interests of the Oklahoma State University and to see that its Rules, Regulations and Policies are enforced. He shall insure that any person or persons found guilty after proper hearing shall be disciplined in accordance with the existing Oklahoma State University Student Disciplinary Regulations.

In carrying out these duties, the President may call upon any member of the University Administration, or any member of the Faculty, and he may call upon any agency of the University created to deal with cases arising under Section A. Action by any state or Federal Court shall not preclude the University from exercising its disciplinary authority.

D. Responsibility of the Board of Regents

1. The Board of Regents recognizes that by the Constitution and Statutes it has the power to make such rules and regulations for the management of the University as it may deem necessary and expedient, not inconsistent with the constitution and laws of the state. While the Regents fully appreciate their obligation in this respect, they further recognize that in dealing with those offenses against the University defined in Section A, hereof, they must impose the duty and authority of enforcing the policies set forth herein in the principal Executive Officer of the University, the President. It will be the responsibility of the Regents to furnish all possible assistance to the President when requested by him.

2. Subject to the provisions of Sections A through D, it shall be the duty of the President to exercise full authority in the regulation of student conduct and in matters of student discipline. In the discharge of this duty, delegation of such authority may be made by the President to Administrative or other officers of the institution, in such manner and to such extents as may by the President be deemed necessary and expedient; provided, that on the discharge of his duty it shall be the duty of the President to secure to every student the right of due process.

3. The text of this resolution shall be printed in the Student Regulations sections of the Student Handbook of the University and in the Institutional Catalog. The Student Handbook may be accessed at http://www.osuit.edu/academics/forms/student_rights_responsibility.pdf.
Traffic and Parking Violations

A $25 fine is charged for each traffic or parking violation. This includes but is not limited to the following:

- Parking without permit.
- Parking in restricted or prohibited areas.
- Failure to park in a marked parking area. All parking areas are marked with white or yellow stripes. If not marked as a space, it is not a legal parking space.
- Failure to stop for stop sign or pedestrian in crosswalk.
- Exceeding speed limit.
- Careless driving.
- Repairing vehicle or changing oil.
- Any other traffic and parking violations.

Campus Police are authorized to issue county citations as well for traffic violations.

A $50 fine is assessed for parking in handicapped zones; however, drivers could be charged as much as the mandated state law fine of $500.

Operating Vehicles on Campus

The following regulations are applicable to all students and employees operating vehicles on campus:

- All vehicles used by students and employees must have a current OSU Institute of Technology parking permit.
- Parking permits are available at the Bursar’s Office.
- Campus parking permits are to be hung from the rear view mirror.
- All parking spaces are marked with white or yellow lines. If not marked as a space, it is not a legal parking space.
- Students and employees are required to comply with all other traffic laws.
- Wheel locks will be applied to vehicles which have been ticketed for repeated parking violations and/or failure to display a parking permit. Damage to wheel locks is charged to the students account.
- Parking vehicles facing into normal flow of traffic is prohibited.
- Any individual who violates any of the above regulations will be fined accordingly.

- Transfer of parking permits from one vehicle to another is allowed provided both vehicles are registered to that single hanging permit (limit two vehicles per permit). The fixed permit on the window may not be transferred.
- Washing of vehicles on campus is prohibited.
- Abandoning and/or junking vehicles on the OSU Institute of Technology campus is prohibited. Any vehicle determined to be abandoned or junked will be towed and stored at the owner’s expense after a reasonable effort has been made to contact the owner.
- Speed limit on campus streets is 20 miles per hour unless otherwise posted.
- Parking lot speed limit is 10 miles per hour.
- Double parking is prohibited.
- Parking in spaces reserved for visitors is prohibited.
- Parking in spaces reserved for persons with disabilities requires an appropriate permit.
- Motorists must stop for pedestrian(s) in crosswalk.
- Bicycles ridden at night must be equipped with lights or have reflectors front, rear, and sides.
- Skateboards, inline skates, roller skates, bicycles, scooters, and any other personal transportation device, excluding documented ambulatory aids as prescribed by a medical doctor, are prohibited on all campus sidewalks.
- Parking and/or driving on the lawn or sidewalks is prohibited.
- Parking in service vehicle parking spaces is prohibited.
2011 Crime Statistics

<table>
<thead>
<tr>
<th>Offense</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homicide</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Manslaughter</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sex Offenses (Forcible)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sex Offenses (Non-Forcible)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Robbery</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Assaults (Simple)</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Assaults (Aggravated)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Burglary</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Larceny</td>
<td>8</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>Motor Vehicle Theft</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Arson</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hate Crimes</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stalking</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Criminal Incidents 43 35 55

Non-Criminal Incidents 189 201 180

Total Reports 232 236 235

<table>
<thead>
<tr>
<th>Arrests</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>18</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Drugs</td>
<td>6</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Weapons</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Traffic</td>
<td>12</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>All Others</td>
<td>5</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Arrests 42 52 47

<table>
<thead>
<tr>
<th>Disciplinary</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>9</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Drugs</td>
<td>1</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Weapons</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Disciplinary 10 21 37

Disciplinary referrals for incidents involving alcohol and weapons that do not include an arrest indicate the circumstances did not actually constitute a crime but rather a violation of institutional policies. Likewise, referrals for incidents involving drugs that do not include an arrest indicate that there was evidence of drugs present, but insufficient evidence to support criminal charges. The number of total reports includes reports other than those listed. They include reports of other crimes and non-criminal incidents.
OSUIT at the MidAmerica Industrial Park

OSU Institute of Technology developed a unique partnership with the MidAmerica Industrial Park in Pryor, Oklahoma in 1998 and has been offering a multitude of services and programs since.

The MidAmerica Industrial Park is one of the largest rural industrial parks in the country with over 9,000 acres and is home to over 75 manufacturing and processing companies. The park is operated and administered by the Oklahoma Ordinance Works Authority (OWA) who extended an invitation to offer course work and has supported OSUIT’s endeavors at the park constructing a 25,000 sq ft facility for OSUIT.

The center offers an Associate in Applied Science degree in Engineering Technologies as well as training certificate programs in subject areas that cater to the prevailing technical skills required by the companies within the park and surrounding communities.

In addition to the technical education offerings the school is also the Adult Education provider for Mayes County offering basic literacy training for those working toward a GED or correcting literacy deficiencies in the workplace.

In 2005 the trustees of the MidAmerica Industrial Park approved the construction of a small business incubator to be operated by OSUIT. The incubator provides a safe haven for startup companies to operate and grow. The incubator focuses on high tech companies which have the potential of growing high tech jobs in the local area.

OSUIT/MAIP is the perfect place for the local student who is looking to increase skill sets and earning potential. The school maintains close relationships with the employers within the park and is the go to place when searching for high skilled technical employees.

A.A.S. Degree Offerings

Engineering Technologies:
- Electrical/Electronic Technology
- Design/Drafting Technologies

Certificate Options
- Industrial Maintenance Technology
- Design & Drafting Technologies
- Machining Technologies

Adult Literacy Offerings
- GED Preparation
- Family Literacy
- Workplace Literacy

Youth Programming
- Introduction to Engineering and Technology

For additional information contact the OSUIT/MAIP offices at 918-825-4678, scott.fry@okstate.edu, or http://maip.osuit.edu
The College of the Muscogee Nation was created by an act of the Muscogee (Creek) Nation National Council and signed into law by Principal Chief A.D. Ellis on September 1, 2004. Its Mission is as follows:

The College of the Muscogee Nation is the institution of higher education for the Muscogee (Creek) Nation emphasizing native culture, values, language and self determination. The college will provide a positive learning environment for tribal and non-tribal students as citizens of a tribal and global society supported by teaching excellence and will offer exemplary academic programs that meet student, tribal and societal needs. Through instructional quality and visionary leadership, the College of the Muscogee Nation will encourage lifelong learners for personal growth, professional development and intellectual advancement.

The College of the Muscogee Nation (CMN) is preparing to become an accredited freestanding institution offering Associate Degrees. However, until accreditation is received, CMN has collaborated with the Oklahoma State University System in offering a variety of general education and tribal specific courses at OSU Institute of Technology. Through student dual enrollment at the CMN and OSU Institute of Technology, coursework is accepted and recorded by OSU Institute of Technology. In addition CMN students are eligible for the same services from OSU Institute of Technology that all students receive.

An Associate in Applied Science (AAS) degree in Gaming has been approved by the Board of Regents for Oklahoma State University and the A&M Colleges and the Oklahoma State Regents for Higher Education.

BOARD OF REGENTS FOR THE CMN:
- Ramona Mason, Chair
- C. Blue Clark, Vice Chair
- Sharon Mouss, Secretary
- Pandee Ramirez, Member
- Mike Flud, Member

ADMINISTRATION

Robert Bible
President, College of the Muscogee Nation
B.A., Northeastern State University
M.Ed., Northeastern State University

Angela Bunner
Dean of Academic Affairs
B.S., Oklahoma State University
M.S., University of Kansas

Mekko Tyner
Registrar/Admissions Officer
B.S., Haskell Indian Nations University
J.D., University of Kansas

Jan Hart
Business Manager
B.S., Northeastern State University

James King
Regents’ Director of Institutional Effectiveness
B.S., East Central State University
M.A., University of Minnesota
Ed.D., Oklahoma State University

Monte Randell
Dean of Student Affairs
B.S., Haskell Indian Nations University
M.A., University of Oklahoma

Allan Colbert
Tribal Services
B.S., M.A., Northeastern State University

Rita Courtwright
Academic/Core Instructor
B.S., M.A., Northeastern State University

Karen Haught
Librarian
B.A., Northeastern State University
M.L.I.S., University of Oklahoma

Norma Marshall
Native American Studies
B.S., East Central University
M.S., Oklahoma State University

Kasey McKenzie
Police Science
B.A., University of Oklahoma
J.D., University of Tulsa

David Tayrien
Gaming
B.S., M.B.A., M.M., University of Phoenix

Ronnie Sands
General Education
B.S., East Central University

Lindsay Green
Research Specialist
Financial Aid Coordinator
B.S., Oklahoma State University
PROGRAMS OF STUDY

Allied Health Sciences Division
Nursing
Orthotics & Prosthetics

Arts & Sciences Division
General Studies (degree seeking: undeclared majors)
Allied Health Science
Business
Enterprise Development (Business Administration)
Enterprise Development (General Studies)
Office Information Systems Technology*
Pre-Education (Elementary)
Pre-Education (Secondary)

Automotive Technologies Division
Automotive Collision Repair Technology
Automotive Service Technology
 Ford ASSET
 GM ASE-P
 MOPAR CAP
 PRO-TECH
 Toyota T-TEN

College of the Muscogee Nation
Gaming

Construction Technologies Division
Air Conditioning & Refrigeration Technology
Construction Technology
 Construction Management
 Electrical
 High Voltage Electricity
 Masonry Construction*
 Residential Construction*
 Welding*

Culinary Arts Division
Culinary Arts

Engineering Technologies Division
Engineering Technologies
 Electrical/Electronics Specialization
 Engineering Graphic & Design/Drafting
 Manufacturing Technology
 Civil Engineering/Surveying Technology
Pipeline Integrity Technology
Power Plant Technology
Civil Engineering Technology
Instrumentation Engineering Technologies

HEVi Technologies Division
Aggreko Technician Training Program
CAT Dealer Prep
Gas Processors Assn./Gas Processors Suppliers Assn., Natural Gas Compression Program
Komatsu Advanced Career Training Program
MHC Kenworth Truck Technology
Manitowoc LIFT Program
Southwestern Assoc. Industrial & Farm Equipment

Information Technologies Division
Information Technologies

Visual Communications Technologies Division
Graphic Design Technology
Multimedia Technology
Photography Technology

Watchmaking Division
Watchmaking & Microtechnology

*These programs are offered through an Alliance Agreement with several Oklahoma Career Technology Centers.
PROGRAMS OF STUDY

All programs listed here are planned for the 2012-2013 academic year. Although every effort is made to present accurate offerings, a listing in this catalog is not a guarantee of availability. Degree requirements may be revised from time to time, and the official document will be the electronic catalog posted on the campus website. All programs of study, offered by OSU Institute of Technology, are offered with the approval of the Oklahoma State Regents for Higher Education.

College graduates at all levels, but especially those earning associate degrees in advanced technological education, must possess capacities for connecting their education experiences with an exploding information-based work place. Some have said, “To do this best, a major ought to have a beginning, middle, and an end.” It is this clear progress of learning that prompts the Cornerstone to Capstone experience.

THE CORNERSTONE TO CAPSTONE EXPERIENCE

OSU Institute of Technology is committed to the success of its students academically and professionally. For this reason the campus has instituted a unique, full-spectrum process called the Cornerstone to Capstone Experience designed to enable students to see from their very first semester the “light at the end of the tunnel”.

This approach encourages students to explore career options, to integrate technology into learning and to synthesize theory and practice.

COLLEGE CORNERSTONE

Step one in the process is College Cornerstone. In this course students learn to use the leading edge technology available on campus, to become savvy, self-motivated learners and to assess their strengths as learners and technical high performers.

Using a number of nationally normed assessment tools, the guidance of Cornerstone facilitators and their technical advisors, students evaluate where they are, where employers expect them to be upon graduation and how they can begin the journey to reaching their goals.

CAREER CORNERSTONE

Like College Cornerstone, Career Cornerstone continues building on students’ awareness and strengths, emphasizing current trends and expected competencies in their field of study.

Designed as an integrated, competency-based approach to learning, Career Cornerstone is woven into core courses within each program of study. Students become familiar with real-world expectations as they build competencies in communications, teamwork and career options.

OSU Institute of Technology’s close alliance with industry leaders through the advisory board process informs students of the expectations of today’s and tomorrow’s employers.

INTERNSHIPS

Employer-based internship experiences at OSU Institute of Technology formally integrate academic study with authentic work experience. Internships are sponsored by a large number of Oklahoma employers as well as employers throughout the region.

During the internship period, the student is visited periodically by OSU Institute of Technology faculty. In addition, the employer provides the student with a mentor who will be available for advice and support throughout the internship experience.

Students earn college credit during the internship period and nearly all student interns are paid. Internship sites are pre-approved by OSU Institute of Technology in order to assure a quality educational experience. The number and structure of those internships varies with each program of study. Students must contact the appropriate departmental office for details on program-specific internships.

CAPSTONE

The Capstone Experience is the culmination of student success at OSU Institute of Technology. Here is where students apply the knowledge from their internships, classes, labs and life experiences to real-world problems and concerns. Students work in teams on projects designed to integrate all they have learned and who they have become during their education.

Through the Cornerstone to Capstone Experience, OSU Institute of Technology students build layer upon layer of knowledge, skill and technology awareness. They become the self-directed and self-motivated learners and workers that employers hire and keep.

ENTRY REQUIREMENTS

All programs require that students complete the OSU Institute of Technology admissions application and meet other institutional requirements. Some programs have additional entry requirements, which are listed at the beginning of each program of study outline.

The following pages list the Programs of Study in alphabetical order by division name.
Nursing

Associate in Applied Science (72 credit hours)

Associate degree nursing programs are offered in community college settings. General education courses are taken at this level too, as well as nursing courses. Associate degree nursing programs prepare an individual entering the nursing field to take the examination for the Registered Nurse (R.N.) licensure. The R.N. prepared at the associate degree level has many employment opportunities, including providing direct patient care in a variety of settings to include direct supervision of L.P.N.s and unlicensed assistive personnel. A registered nurse is accountable to think critically, collaborate with and advocate for patients and families, and participate in the improvement of health care systems.

PROGRAM ADMISSION REQUIREMENTS:

Advisement: All students declaring a nursing major are assigned to the Department of Nursing for advisement.

Application to the Program: Students wishing to be considered for the program should meet the admission requirements to OSU Institute of Technology and have the following data in their file by the final closing date of the application period: 1.) Nursing Application, 2.) Students must score at or above the 50 percentile (50%) ranking on the Kaplan Admission Test for Reading and Math to be considered for the nursing program, 3.) All official college transcripts should be on file at the OSU Institute of Technology registrar’s office and a copy in the Nursing Department, 4.) Students applying to the OSU Institute of Technology Nursing Program are selected on the basis of a point system. LPN applicants, please see a nursing advisor regarding the application process.

It is strongly recommended that the science courses be completed before the beginning of the nursing program. To be considered for admission to the program, students will have to maintain a minimum grade point average of 2.0 in required general education and support courses. Successful completion of the nursing program requires a “C” in all courses related to the Associate in Applied Science in Nursing Degree. A student cannot be admitted to the program with a “D” in any required course.

The following minimal physical and mental qualifications are necessary to be considered for admission into and progression through the OSU Institute of Technology Nursing Program but are not limited to:

1. The ability to lift weights of up to 35% of recommended body weight independently.
2. The ability to facilitate movement in client’s room and work areas.
3. Visual acuity sufficient to observe and assess client behavior, prepares and administers medications, and accurately read monitors and utilizes equipment.
4. Auditory acuity sufficient to hear instructions, requests, monitoring alarms, and to auscultate heart tones, breathe sounds, and bowel sounds.
5. The motor ability necessary to manipulate equipment and supplies to utilize palpation and percussion in client assessment.
6. The ability to proficiently speak, write, and comprehend the English language.
7. The ability to communicate in a professional manner, establish rapport with clients and colleagues, use problem solving skills, and function effectively under stress.

A negative criminal history background check and a negative drug screen are required upon acceptance into the nursing program. For more detailed information, please contact the Nursing office at 918-293-5337.

DEPARTMENTAL COURSES: 39 CREDIT HOURS

Must pass courses with a grade “C” or higher. LPN students may receive advanced standing credit for NURS 1128 and NURS 1322 and may take the CLEP exam to exempt them from NURS 1229.

NURS 1128 Foundations of Nursing
NURS 1133 LPN to RN Transition (LPN only)
NURS 1229 Nursing Care of Families
NURS 1322 Nursing Dosage Calculation

NURS 2129 Nursing Care of Adults I
NURS 2229 Nursing Care of Adults II
NURS 2222 Nursing Capstone Seminar

GENERAL EDUCATION REQUIREMENTS: 33 CREDIT HOURS

Must pass courses with a grade “C” or higher.

BEHAVIORAL SCIENCE (6 CREDIT HOURS)
PSYC 1113 Introductory Psychology
PSYC 2583 Developmental Psychology

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1113 Freshman Composition I
ENGL 1213 Freshman Composition II

HISTORY (3 CREDIT HOURS)
HIST 1483 U. S. History to 1865 or
HIST 1493 U. S. History Since 1865

NUTRITIONAL SCIENCE (3 CREDIT HOURS)
NSCI 1113 Introduction to Nutrition

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U. S. Government

SCIENCE (12 CREDIT HOURS)
BIOL 2104 Human Anatomy
BIOL 2114 Human Physiology
BIOL 2124 General Microbiology

RECOMMENDED ELECTIVES (NOT REQUIRED)
CHEM 1314 General Chemistry I
CS 1133 Computer Literacy & Application
GEOG 2243 Geography
HUM 1013 Humanities I
HUM 1033 Humanities II
MATH 1513 College Algebra
NURS 1132 Pre-Nursing Preparation
NURS 1143 Professionalism in Healthcare
NURS 2002 Pharmacology in Nursing (on-line)
NURS 2303 Medical Terminology (on-line)
NURS 2991 & 2992 Independent Study
PHIL 1213 Ethics
SPAN 1115 Elementary Spanish I
SPCH 1113 Introduction to Speech Communications
STAT 2013 Elementary Statistics

GRADING SCALE:

A = 92 - 100% D = 66 - 74%
B = 84 - 91% F = 0 - 65%
C = 75 - 83%
Orthotic and Prosthetic Technologies

Associate in Applied Science (73 credit hours)

Orthotics and Prosthetics are applied physical disciplines that address neuromuscular and skeletal problems in the human body. The goals of orthotic and prosthetic management are to achieve optimum function, prevent further disability and provide improved appearance through the provision of bracing and artificial limbs.

An ideal candidate for the Orthotic and Prosthetic profession should possess very strong interpersonal skills, excellent manual dexterity and an eye for detail. O&P is a "hands on" profession where knowledge, commitment and dedication translate into better lives for each patient.

There is a growing need for O&P professionals. While only sixteen institutions nationwide currently offer O&P education, the demand for provider services is expected to dramatically increase by 2020 without a concurrent increase in the number of O&P students, nearly 40% of the U.S. population who require prosthetic and orthotic care will be unable to obtain it.

These statistics are taken from a study conducted by Caroline Nielsen, PhD, entitled "Issues Affecting the Future Demand for Orthotists and Prosthetists" (May 2002).

Graduates of the Orthotic and Prosthetic Technologies Program earn an Associate in Applied Science degree and may work in two job categories: technician and fitter. Certification for these disciplines is provided through the American Board for Certification in Orthotics and Prosthetics (ABC) and the Board of Certification, International (BOC).

Lab fees are required for each course under the O&P Degree Plan at an average charge of $300.00 per course. Additional costs that are connected to the program include textbooks, tool kits, and uniforms (these items can be purchased in the Bookstore). These costs may vary from semester to semester and are subject to change without notice.

DEPARTMENTAL REQUIREMENTS: 40 CREDIT HOURS

A minimum program grade average of 2.0 is required, with a minimum grade of 'C' in each course of Departmental Requirements.

ORTHOTIC AND PROSTHETIC TECHNOLOGIES: (40 CREDIT HOURS)

OPT 1204 Upper Extremity Prosthetics
OPT 1214 Spinal Orthotics
OPT 1304 Transfemoral Prosthetics
OPT 2314 Prefab & Pedorthic Techniques
OPT 2324 Lower Extremity Orthotics
OPT 2404 Trans-Femoral Prosthetics
OPT 2414 Upper Extremity Orthotics
OPT 2812 Internship

DEPARTMENTAL ELECTIVES: 1 CREDIT HOUR

OPT 2101 Orientation to Internship

GENERAL EDUCATION REQUIREMENTS: 32 CREDIT HOURS

BEHAVIORAL SCIENCES (3 CREDIT HOURS)

PSYC 1113 Introductory Psychology

COMMUNICATION ARTS (6 CREDIT HOURS)

ENGL 1113 Freshman Composition I
ENGL 1213 Freshman Composition II

HISTORY (3 CREDIT HOURS)

HIST 1483 U. S. History to 1865 or HIST 1493 U. S. History Since 1865

MATHEMATICS (3 CREDIT HOURS)

MATH 1513 College Algebra

PHILOSOPHY (3 CREDIT HOURS)

PHIL 1213 Ethics

POLITICAL SCIENCE (3 CREDIT HOURS)

POLS 1113 U. S. Government

SCIENCE (8 CREDIT HOURS)

BIOL 1114 General Biology
BIOL 2104 Human Anatomy

ORAL COMMUNICATIONS (3 CREDIT HOURS)

SPCH 1113 Intro to Speech Communications

INTERDEPARTMENTAL REQUIREMENTS: 1 CREDIT HOUR

GENERAL EDUCATION (1 CREDIT HOUR)

ORIE 1011 College Strategies

All OPT courses carry a lab and material fee cost of $300.00 per course, with the exception of OPT 2314 that has a fee of $250.00. These fees do not include materials such as textbooks, tool kits, and uniforms that can be purchased in the bookstore.

PROGRAM ADMISSION REQUIREMENTS:

1. Must complete an application for admission to OSU Institute of Technology
2. Meet the following additional requirements.
 a. Prospective Student Eligibility Requirements:
 • High School Diploma or GED
 • Removal of Remedial Coursework
 • Lift up to 35% of body weight
 • Visual acuity sufficient to observe and assess patients
 • Auditory acuity sufficient to hear instructions and requests
 • Motor ability necessary to manipulate hand and power tools
 • Speak, write and comprehend English
 • Communicate in a professional manner
 b. Students must provide proof of the following immunizations:
 • A complete Hepatitis B vaccination series (Series of three or waiver);
 • Negative PPD or chest x-ray;
 • MMR vaccination(s) or positive titers(s);
 • A written verification of varicella history, varicella vaccination or a varicella titer by a physician or a physician's assistant.
 c. Students must obtain a clear background check from the Oklahoma State Bureau of Investigation (OSBI).

For more detailed information, please contact the Orthotic and Prosthetic Office at 918-293-5324.
General Education Course Offerings

Each technical program of study at OSU Institute of Technology requires General Education courses. These courses include English, math, science, history and social science. Students who are undecided about which program of study can take General Education courses first and select a major later. The institution offers day, evening, weekend, and online courses to allow students flexibility in planning for their educational needs.

Arts and Sciences offers a full 15-week summer semester, and 8-week courses during the months of June and July. These courses are especially appealing to high school students completing their junior year, recent high school graduates, college students that are home for the summer, and anyone who has mornings or afternoons free.

OSU Institute of Technology general education courses often transfer to all state colleges. For verification of transferability, reference the Oklahoma State Regents Transfer matrix.

For more detailed information, please contact Arts & Sciences at 918-293-4768.

<table>
<thead>
<tr>
<th>COMPUTER LITERACY</th>
<th>CS 1013</th>
<th>Computer Literacy & Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMUNICATION ARTS</td>
<td>ENGL 0143</td>
<td>English Fundamentals</td>
</tr>
<tr>
<td></td>
<td>ENGL 1033</td>
<td>Technical Writing I</td>
</tr>
<tr>
<td></td>
<td>ENGL 1113</td>
<td>Freshman Composition I</td>
</tr>
<tr>
<td></td>
<td>ENGL 1213</td>
<td>Freshman Composition II</td>
</tr>
<tr>
<td></td>
<td>ENGL 2033</td>
<td>Technical Writing II</td>
</tr>
<tr>
<td></td>
<td>ENGL 2113</td>
<td>Creative Writing</td>
</tr>
<tr>
<td></td>
<td>ENGL 2413</td>
<td>Introduction to Literature</td>
</tr>
<tr>
<td></td>
<td>ENGL 2773</td>
<td>Survey of American Literature I</td>
</tr>
<tr>
<td></td>
<td>ENGL 2883</td>
<td>Survey of American Literature II</td>
</tr>
<tr>
<td></td>
<td>ENGL 3323</td>
<td>Technical Writing III</td>
</tr>
<tr>
<td></td>
<td>READ 0143</td>
<td>Reading Fundamentals</td>
</tr>
<tr>
<td>GENERAL BUSINESS</td>
<td>BADM 1113</td>
<td>Introduction to Business</td>
</tr>
<tr>
<td></td>
<td>ECON 2103</td>
<td>Micro Economics</td>
</tr>
<tr>
<td></td>
<td>ECON 2203</td>
<td>Macro Economics</td>
</tr>
<tr>
<td>SOCIAL & BEHAVIORAL SCIENCES</td>
<td>GEOG 2243</td>
<td>Fundamentals of Geography</td>
</tr>
<tr>
<td></td>
<td>HIST 1613</td>
<td>Western Civilization to 1500</td>
</tr>
<tr>
<td></td>
<td>HIST 1623</td>
<td>Western Civilization after 1500</td>
</tr>
<tr>
<td></td>
<td>HIST 2323</td>
<td>Oklahoma History</td>
</tr>
<tr>
<td></td>
<td>PSYC 1113</td>
<td>Introductory Psychology</td>
</tr>
<tr>
<td></td>
<td>PSYC 2313</td>
<td>Psychology of Personal Adjustment</td>
</tr>
<tr>
<td></td>
<td>PSYC 2583</td>
<td>Developmental Psychology</td>
</tr>
<tr>
<td></td>
<td>SOC 1113</td>
<td>Introductory Sociology</td>
</tr>
<tr>
<td>HEALTH & PHYSICAL EDUCATION</td>
<td>HHP 1113</td>
<td>Personal Health</td>
</tr>
<tr>
<td></td>
<td>NSCI 1113</td>
<td>Intro to Nutrition</td>
</tr>
<tr>
<td>HUMANITIES</td>
<td>HUM 1013</td>
<td>Humanities I</td>
</tr>
<tr>
<td></td>
<td>HUM 1033</td>
<td>Humanities II</td>
</tr>
<tr>
<td></td>
<td>HUM 1113</td>
<td>Music Appreciation</td>
</tr>
<tr>
<td></td>
<td>HUM 2243</td>
<td>Native Peoples of North America</td>
</tr>
<tr>
<td></td>
<td>HUM 2453</td>
<td>Introduction to Film</td>
</tr>
<tr>
<td></td>
<td>HUM 2563</td>
<td>Comparative Cultures</td>
</tr>
<tr>
<td></td>
<td>PHIL 1013</td>
<td>Ethics of Leadership</td>
</tr>
<tr>
<td></td>
<td>PHIL 1213</td>
<td>Ethics</td>
</tr>
<tr>
<td></td>
<td>PHIL 1313</td>
<td>Introduction to Logic</td>
</tr>
<tr>
<td></td>
<td>ENGL 2773</td>
<td>Survey of American Literature I</td>
</tr>
<tr>
<td></td>
<td>ENGL 2883</td>
<td>Survey of American Literature II</td>
</tr>
<tr>
<td></td>
<td>GEOG 2243</td>
<td>Fundamentals of Geography</td>
</tr>
<tr>
<td></td>
<td>HIST 1613</td>
<td>Western Civilization to 1500</td>
</tr>
<tr>
<td></td>
<td>HIST 1623</td>
<td>Western Civilization after 1500</td>
</tr>
<tr>
<td></td>
<td>HUM 2663</td>
<td>Study/Trav/Work across Cultural Borders</td>
</tr>
<tr>
<td>MATHEMATICS</td>
<td>MATH 0143</td>
<td>Math Fundamentals</td>
</tr>
<tr>
<td></td>
<td>MATH 0153</td>
<td>Algebra Fundamentals</td>
</tr>
<tr>
<td></td>
<td>MATH 0163</td>
<td>Intermediate Algebra</td>
</tr>
<tr>
<td></td>
<td>MATH 1493</td>
<td>Math for Critical Thinking</td>
</tr>
<tr>
<td></td>
<td>MATH 1513</td>
<td>College Algebra</td>
</tr>
<tr>
<td></td>
<td>MATH 1613</td>
<td>Trigonometry</td>
</tr>
<tr>
<td></td>
<td>MATH 2003</td>
<td>Business Mathematics</td>
</tr>
<tr>
<td></td>
<td>MATH 2144</td>
<td>Calculus I</td>
</tr>
<tr>
<td></td>
<td>MATH 2153</td>
<td>Calculus II</td>
</tr>
<tr>
<td></td>
<td>MATH 2713</td>
<td>Elementary Calculus</td>
</tr>
<tr>
<td></td>
<td>MATH 3103</td>
<td>Discrete Mathematics</td>
</tr>
<tr>
<td></td>
<td>STAT 2013</td>
<td>Elementary Statistics</td>
</tr>
<tr>
<td></td>
<td>STAT 2023</td>
<td>Business Statistics</td>
</tr>
<tr>
<td>ORIENTATION</td>
<td>ORIE 1011</td>
<td>College Strategies</td>
</tr>
<tr>
<td>SCIENCE</td>
<td>BIOL 1014</td>
<td>General Biology (Non-Majors)</td>
</tr>
<tr>
<td></td>
<td>BIOL 1114</td>
<td>General Biology</td>
</tr>
<tr>
<td></td>
<td>BIOL 1404</td>
<td>General Botany</td>
</tr>
<tr>
<td></td>
<td>BIOL 1604</td>
<td>Zoology</td>
</tr>
<tr>
<td></td>
<td>BIOL 2104</td>
<td>Human Anatomy</td>
</tr>
<tr>
<td></td>
<td>BIOL 2114</td>
<td>Human Physiology</td>
</tr>
<tr>
<td></td>
<td>BIOL 2124</td>
<td>General Microbiology</td>
</tr>
<tr>
<td>Physical Sciences (3-5 Credit Hours)</td>
<td>CHEM 1314</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td></td>
<td>CHEM 1515</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td></td>
<td>GEOI 1014</td>
<td>Earth Science</td>
</tr>
<tr>
<td></td>
<td>PHYS 0123</td>
<td>Science</td>
</tr>
<tr>
<td></td>
<td>PHYS 1114</td>
<td>General Physics I</td>
</tr>
<tr>
<td></td>
<td>PHYS 1204</td>
<td>General Physical Science</td>
</tr>
<tr>
<td></td>
<td>PHYS 1214</td>
<td>General Physics II</td>
</tr>
<tr>
<td>ORAL COMMUNICATIONS</td>
<td>SPCH 1113</td>
<td>Introduction to Speech Communications*</td>
</tr>
<tr>
<td></td>
<td>SPCH 2313</td>
<td>Small Group Communications*</td>
</tr>
<tr>
<td></td>
<td>*Recommended for transfer students</td>
<td></td>
</tr>
<tr>
<td>FOREIGN LANGUAGE</td>
<td>ASL 1363</td>
<td>American Sign Language I</td>
</tr>
<tr>
<td></td>
<td>ASL 1373</td>
<td>American Sign Language II</td>
</tr>
<tr>
<td></td>
<td>SPAN 1115</td>
<td>Elementary Spanish I</td>
</tr>
<tr>
<td></td>
<td>SPAN 1225</td>
<td>Elementary Spanish II</td>
</tr>
<tr>
<td>U.S. HISTORY & U.S. GOVERNMENT</td>
<td>HIST 1483</td>
<td>U.S. History to 1865</td>
</tr>
<tr>
<td></td>
<td>HIST 1493</td>
<td>U.S. History since 1865</td>
</tr>
<tr>
<td></td>
<td>POLS 1113</td>
<td>U.S. Government</td>
</tr>
</tbody>
</table>
General Education Core Requirements for Associate in Science Degrees

1. English Composition (6 hours)
 (ENGL 1113, ENGL 1213)
2. U.S. History and U.S. Government (6 hours)
 HIST 1483 or HIST 1493 and POLS 1113
3. Science (6 hours)
 (one course must be a laboratory science)
4. Humanities (6 hours)
 (Chosen from nonperformance courses defined as humanities by the institution granting the associate degree)
5. Mathematics (3 hours)
6. At least one course from the following areas: Psychology, social sciences, foreign languages, fine arts (art, music, drama) (3 hours)
7. Additional liberal arts and sciences courses as needed to meet the minimum total of 60 credit hours required to complete an Associate in Science transfer degree.

Courses used to fulfill general education requirements are identified by code letters that appear preceding the course title listed in the back of the Catalog. The code letters designate the general education category for which the course may be used.

- **Analytical and Quantitative Thought (A)**
 The study of systems of logic and the mathematical sciences.

- **Humanities (H)**
 These courses concentrate on the ideas, beliefs, and arts and literatures that bring cultures to life.

- **Natural Sciences (N)**
 A systematic study of natural processes and the mechanisms and consequences of human intervention in those processes.

- **Social and Behavioral Sciences (S)**
 Human behavior in relation to the social and physical environment.

- **Diversity (D)**
 These courses emphasize socially constructed groups in the United States.

- **International Dimension (I)**
 These courses emphasize contemporary cultures outside the United States.

- **Scientific Investigation (L)**
 Laboratory experience aimed at interpreting scientific hypotheses.

Some degree plans require specific general education courses. If no specific course is listed, any general education course with that designation may be used.

Occasionally students transfer a course that appears to fulfill the criteria & goals for a general education course but the transcript does not indicate a general education designation. The advisor may submit a “Substitution” form along with a course syllabus or course description to the Division Chair of Arts & Sciences along with a copy to the Registrar’s Office.

General education courses are also identified in the Student Information System (SIS).
Allied Health Sciences

Associate in Science

(62 Credit Hours)

The Allied Health Sciences AS degree program was developed in response to statistics showing that Allied Health professionals and technicians are in high demand in Oklahoma, especially rural Oklahoma, and across the Nation. In fact, in 2012 Oklahoma experienced a shortage of more than 11,000 health care personnel in selected professions.

The term Allied Health is used to identify a cluster of health professions encompassing as many as 200 health careers. There are 5 million allied health care providers in the U.S. who work in more than 80 different professions and represent approximately 60% of all health care providers -- but this is just a drop in the bucket in terms of how many allied health care workers are needed to meet current and future healthcare needs in America.

The field of healthcare is rapidly growing and constantly in need of skilled healthcare professionals. For those considering a career in healthcare, this degree is designed to expose students to a broad education in general studies combined with an emphasis on life science subjects such as anatomy and physiology, chemistry, and nutrition. According to Yahoo’s Education page, “graduates with recession-proof degrees in health care find great success”.

OSUIT’s AS degree in Allied Health Sciences is the perfect launch for any individual wishing to pursue a bachelor’s degree in any health care field, as this degree provides a seamless foundation.

Students must complete all program requirement courses with a “C” or better and maintain a 2.50 overall GPA.

PROGRAM REQUIREMENTS: 25 CREDIT HOURS

The Associate in Science in Allied Health Sciences is a transfer degree. Choose one of the following concentrations or provide a degree plan from the senior institution to which you wish to transfer. Deviations must be approved by the Faculty Advisor or Division Chair.

PRE-NUTRITIONAL SCIENCES (25 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1515</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>BIOL 2114</td>
<td>Human Physiology</td>
</tr>
<tr>
<td>BIOL 2124</td>
<td>General Microbiology</td>
</tr>
<tr>
<td>NSCI 1113</td>
<td>Intro to Nutrition</td>
</tr>
<tr>
<td>PSYC 1113</td>
<td>Introductory Psychology</td>
</tr>
<tr>
<td>SOC 1113</td>
<td>Introductory Sociology</td>
</tr>
<tr>
<td>NURS 2303</td>
<td>Medical Terminology</td>
</tr>
</tbody>
</table>

PRE-NUCLEAR MEDICINE, RADIATION THERAPY, RADIOGRAPHY & SONOGRAPHY (25 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2104</td>
<td>Human Anatomy</td>
</tr>
<tr>
<td>BIOL 2114</td>
<td>Human Physiology</td>
</tr>
<tr>
<td>PHYS 1114</td>
<td>General Physics I</td>
</tr>
<tr>
<td>PSYC 1113</td>
<td>Introductory Psychology</td>
</tr>
<tr>
<td>SOC 1113</td>
<td>Introductory Sociology</td>
</tr>
<tr>
<td>NURS 2303</td>
<td>Medical Terminology</td>
</tr>
<tr>
<td>ENGL 1013</td>
<td>Technical Writing I</td>
</tr>
<tr>
<td>1 Hour</td>
<td>Elective</td>
</tr>
</tbody>
</table>

PRE-PHYSICAL & OCCUPATIONAL THERAPY (25 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2104</td>
<td>Human Anatomy</td>
</tr>
<tr>
<td>BIOL 2114</td>
<td>Human Physiology</td>
</tr>
<tr>
<td>PHYS 1114</td>
<td>General Physics I</td>
</tr>
<tr>
<td>PHYS 1214</td>
<td>General Physics II</td>
</tr>
<tr>
<td>PSYC 1113</td>
<td>Introductory Psychology</td>
</tr>
<tr>
<td>STAT 2013</td>
<td>Developmental Psychology</td>
</tr>
</tbody>
</table>

PRE-COMMUNICATION SCIENCES & DISORDERS (25 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2104</td>
<td>Human Anatomy</td>
</tr>
<tr>
<td>BIOL 2114</td>
<td>Human Physiology</td>
</tr>
<tr>
<td>BIOL 2124</td>
<td>General Microbiology</td>
</tr>
<tr>
<td>PHYS 1114</td>
<td>General Physics I</td>
</tr>
<tr>
<td>PSYC 1113</td>
<td>Introductory Psychology</td>
</tr>
<tr>
<td>SOC 1113</td>
<td>Introductory Sociology</td>
</tr>
<tr>
<td>NURS 2303</td>
<td>Medical Terminology</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION REQUIREMENTS: 37 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1113</td>
<td>Freshman Composition I</td>
</tr>
<tr>
<td>ENGL 1213</td>
<td>Freshman Composition II</td>
</tr>
</tbody>
</table>

HUMANITIES (9 CREDIT HOURS)

Choose three courses from selection designated with an “H”, “I”, “D”. *Designates required course.

*HUM 2243 Native Peoples of North America
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUM 2243</td>
<td>Native Peoples of North America</td>
</tr>
</tbody>
</table>

ENGL 2413 Introduction to Literature

HUM 2563 Comparative Cultures

HUM 2663 Stdy/TavWrk across Cultural Borders

PHIL 1213 Ethics

MATHEMATICS (3 CREDIT HOURS)

Select from courses designated with an “A”.

MATH 1513 College Algebra

ORIENTATION (1 CREDIT HOUR)

ORIE 1011 College Strategies

SCIENCE (8 CREDIT HOURS)

(Must select one (1) course from each area)

Biological Sciences (4 Credit Hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1604</td>
<td>Zoology</td>
</tr>
</tbody>
</table>

Physical Sciences (4 Credit Hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1314</td>
<td>General Chemistry I</td>
</tr>
</tbody>
</table>

U.S. HISTORY & U.S. GOVERNMENT (6 CREDIT HOURS)

*One of these two history courses is required:

HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865

POLI 1113 U.S. Government (required)

APPROVED ELECTIVES (4 CREDIT HOURS) DIVISION APPROVAL
Business

Associate in Science
(61 credit hours)

This degree option allows students to earn the first two years of a bachelor’s degree in business at this campus with assurances that all courses will transfer to another Oklahoma college offering a bachelor’s degree in business.

The strength of this associate degree is that it saves the student considerable time, travel and money by allowing one to remain closer to home for the first two years of study.

OSU Institute of Technology’s business degree program has been carefully coordinated with other colleges to make the transfer of the 60 semester credit hours earned at this campus a simple and seamless process.

Whether one’s goal is to explore careers in accounting, sales, marketing or finance, the solid core of business courses offered by OSU Institute of Technology is a great first step.

For more detailed information, please contact Arts & Sciences at 918-293-4768.

<table>
<thead>
<tr>
<th>PROGRAM REQUIREMENTS: 15 CREDIT HOURS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ACCOUNTING (6 CREDIT HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 2103 Financial Accounting</td>
</tr>
<tr>
<td>ACCT 2203 Managerial Accounting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECONOMICS (6 CREDIT HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2103 Microeconomics</td>
</tr>
<tr>
<td>ECON 2203 Macroeconomics (NOTE: this course is a prerequisite for ECON 2103-Microeconomics.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATISTICS (3 CREDIT HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 2013 Elementary Statistics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GENERAL EDUCATION REQUIREMENTS: 39 CREDIT HOURS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>COMPUTER LITERACY (3 CREDIT HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1013 Computer Literacy & Applications</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMUNICATION ARTS (6 CREDIT HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1113 Freshman Composition I</td>
</tr>
<tr>
<td>ENGL 1213 Freshman Composition II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HUMANITIES (6 CREDIT HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose two courses from selection designated with an “H”, “I”, “D”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mathematics (3 CREDIT HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select from courses designated with an “A”.</td>
</tr>
<tr>
<td>MATH 1513 College Algebra</td>
</tr>
<tr>
<td>MATH 1613 Trigonometry</td>
</tr>
<tr>
<td>MATH 2713 Introductory Calculus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORIENTATION (1 CREDIT HOUR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIE 1011 College Strategies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCIENCE (6-9 CREDIT HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(One course selected must be a lab course)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biological Sciences (3-4 Credit Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1014 General Biology (Non-Majors)</td>
</tr>
<tr>
<td>BIOL 1114 General Biology</td>
</tr>
<tr>
<td>BIOL 1404 General Botany</td>
</tr>
<tr>
<td>BIOL 1604 Zoology</td>
</tr>
<tr>
<td>BIOL 2104 Human Anatomy</td>
</tr>
<tr>
<td>BIOL 2114 Human Physiology</td>
</tr>
<tr>
<td>BIOL 2124 General Microbiology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Sciences (3-5 Credit Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1314 General Chemistry I</td>
</tr>
<tr>
<td>CHEM 1515 General Chemistry II</td>
</tr>
<tr>
<td>GEO 1014 Earth Science</td>
</tr>
<tr>
<td>PHYS 1114 General Physics I</td>
</tr>
<tr>
<td>PHYS 1204 General Physical Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Natural Sciences (3 Credit Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCI 1113 Introduction to Nutrition</td>
</tr>
<tr>
<td>HHP 1113 Personal Health</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U.S. HISTORY & U.S. GOVERNMENT (6 CREDIT HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One of these two History courses required:</td>
</tr>
<tr>
<td>HIST 1483 U.S. History to 1865 or</td>
</tr>
<tr>
<td>HIST 1493 U.S. History Since 1865 and</td>
</tr>
<tr>
<td>POLS 1113 U.S. Government (required)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORAL COMMUNICATIONS (3 CREDIT HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPCH 1113 Intro to Speech Communication</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELECTIVES (8 CREDIT HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Program Electives require Division Chair approval if not on this list.</td>
</tr>
<tr>
<td>BADM 2063 Business Law I</td>
</tr>
<tr>
<td>BADM 2373 Business Communications</td>
</tr>
<tr>
<td>MGMT 2313 Principles of Management</td>
</tr>
<tr>
<td>MGMT 2603 Human Resource Management</td>
</tr>
<tr>
<td>MGMT 2913 Leadership & Organizational Mgmt.</td>
</tr>
<tr>
<td>MATH 2144 Calculus I</td>
</tr>
</tbody>
</table>
Enterprise Development - Business Administration

Associate in Science (60 Credit Hours)

As part of Oklahoma's Reach Higher program, OSUIT offers an Associate in Science degree in Enterprise Development with a concentration in business administration or general studies. The program is designed for working adults or those who are time- or place-bound and unable to pursue education through traditional means. The curriculum is approved by the Oklahoma State Regents for Higher Education and OSUIT accepts transfer credits from any of the 14 two-year institutions in Oklahoma.

This degree can transfer seamlessly into a bachelor's degree!

Minimum requirements:

- 18 hours of earned college credit
- 2.0 GPA cumulative college GPA
- Remedial work completed

Program features:

- Personalized schedules and courses of study that meet career goals
- Flexible enrollment periods year-round

If you have any questions about the Enterprise Development Adult Degree Completion Program, contact the Reach Higher Advisor directly at 918-293-4471.

PROGRAM REQUIREMENTS: 23 CREDIT HOURS

- **INTERNSHIP (3 CREDIT HOURS)**
 - BADM 2232 Capstone Business Seminar
 - BADM 2903 Business/Occupational Internship

- **ACCOUNTING (6 CREDIT HOURS)**
 - ACCT 2103 Financial Accounting
 - ACCT 2203 Managerial Accounting

- **ECONOMICS (6 CREDIT HOURS)**
 - ECON 2103 Microeconomics
 - ECON 2203 Macroeconomics
 (NOTE: this course is a prerequisite for ECON 2103-Microeconomics.)

- **MARKETING (3 CREDIT HOURS)**
 - BADM 2153 Marketing Principles

- **STATISTICS (3 CREDIT HOURS)**
 - STAT 2023 Business Statistics

- **GENERAL EDUCATION REQUIREMENTS: 37 CREDIT HOURS**

 COMMUNICATION ARTS (6 CREDIT HOURS)
 - ENGL 1113 Freshman Composition I
 - ENGL 1213 Freshman Composition II

 HUMANITIES (6 CREDIT HOURS)
 Choose two courses from selection designated with an "H", "I", "D".
 - ENGL 2413 Introduction to Literature
 - ENGL 2773 Survey of American Literature I
 - ENGL 2883 Survey of American Literature II
 - HIST 1613 Western Civilization to 1500
 - HIST 1623 Western Civilization After 1500
 - HUM 1013 Humanities I
 - HUM 1033 Humanities II
 - HUM 1113 Music Appreciation
 - HUM 2243 Native Peoples of North America
 - HUM 2453 Introduction to Film
 - HUM 2563 Comparative Cultures
 - HUM 2663 Stdy/Trav/Wrk across Cultural Borders
 - PHIL 1213 Ethics

 MATHEMATICS (3 CREDIT HOURS)
 Select from courses designated with an "A".
 - MATH 1493 Math for Critical Thinking
 - MATH 1513 College Algebra
 - STAT 2013 Elementary Statistics

- **ORAL COMMUNICATIONS (3 CREDIT HOURS)**
 - SPCH 1113 Intro to Speech Communications

- **SCIENCE (6-9 CREDIT HOURS)**
 (Must select one (1) course from each area)
 - **Biological Sciences (3-4 Credit Hours)**
 - BIOL 1014 General Biology (Non-Majors)
 - BIOL 1114 General Biology
 - BIOL 1404 General Botany
 - BIOL 2104 Human Anatomy
 - BIOL 2114 Human Physiology
 - BIOL 2124 General Microbiology
 - BIOL 1604 Zoology
 - **Physical Sciences (3-5 Credit Hours)**
 - CHEM 1314 General Chemistry I
 - GEOG 1014 Earth Science
 - PHYS 1114 General Physics I
 - PHYS 1204 General Physical Science
 - CHEM 1515 General Chemistry II
 - **U.S. HISTORY & U.S. GOVERNMENT (6 CREDIT HOURS)**
 - HIST 1483 U.S. History to 1865 or HIST 1493 U.S. History Since 1865
 - POLS 1113 U.S. Government (required)

- **SOCIAL SCIENCE, TECHNOLOGY & LANGUAGE (6 CREDIT HOURS)**
 - CS 1013 Computer Literacy & Applications
 - GEOG 2243 Fundamentals of Geography
 - PSYC 1113 Introductory Psychology
 - PSYC 2313 Psychology of Personal Adjustment
 - PSYC 2583 Developmental Psychology
 - SOC 1113 Introductory Sociology
 - SPAN 1115 Elementary Spanish I
 - SPAN 1215 Elementary Spanish II

Students should consult with their advisor, for major area of interest.
Enterprise Development -
General Studies

Associate in Science
(60 Credit Hours)

As part of Oklahoma’s Reach Higher program, OSUIT offers an Associate in Science degree in Enterprise Development with a concentration in business administration or general studies. The program is designed for working adults or those who are time- or place-bound and unable to pursue education through traditional means. The curriculum is approved by the Oklahoma State Regents for Higher Education and you can take and transfer back to OSUIT credits from any of the 14 two-year institutions in Oklahoma. This degree can transfer seamlessly into a bachelor’s degree.

Minimum requirements:
- 18 hours of earned college credit
- 2.0 GPA cumulative college GPA
- Remedial work completed

Program features:
- Personalized schedules and courses of study that meet career goals
- Flexible enrollment periods year-round

If you have any questions about the Enterprise Development Adult Degree Completion Program, contact the Reach Higher Advisor directly at 918-293-4471.

PROGRAM REQUIREMENTS:

GENERAL STUDIES: 23 CREDIT HOURS
College level hours selected from the student’s field of interest.

GENERAL EDUCATION REQUIREMENTS: 37 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT HOURS)
- ENGL 1113 Freshman Composition I
- ENGL 1213 Freshman Composition II

ORAL COMMUNICATIONS (3 CREDIT HOURS)
- SPCH 1113 Intro to Speech Communications

HUMANITIES (6 CREDIT HOURS)
Choose two courses from selection designated with an “H”, “I”, “D”.
- ENGL 2413 Introduction to Literature
- ENGL 2773 Survey of American Literature I
- ENGL 2883 Survey of American Literature II
- HIST 1613 Western Civilization to 1500
- HIST 1623 Western Civilization After 1500
- HUM 1013 Humanities I
- HUM 1033 Humanities II
- HUM 1113 Music Appreciation
- HUM 2243 Native Peoples of North America
- HUM 2453 Introduction to Film
- HUM 2563 Comparative Cultures
- HUM 2663 Study/Trav/Wrk across Cultural Borders
- PHIL 1213 Ethics

MATHEMATICS (3 CREDIT HOURS)
Select from courses designated with an “A”.
- MATH 1493 Math for Critical Thinking
- MATH 1513 College Algebra
- STAT 2013 Elementary Statistics

SCIENCE
(Must select one (1) course from each area)

Life Sciences (3-4 Credit Hours)
- BIOL 1014 General Biology (Non-Majors)
- BIOL 1114 General Biology
- BIOL 1404 General Botany
- BIOL 1604 Zoology
- BIOL 2104 Human Anatomy
- BIOL 2114 Human Physiology
- BIOL 2124 General Microbiology

Physical Sciences (3-4 Credit Hours)
- CHEM 1314 General Chemistry I
- CHEM 1515 General Chemistry II
- GEOL 1014 Earth Science
- PHYS 1114 General Physics I
- PHYS 1204 General Physical Science

U.S. HISTORY & U.S. GOVERNMENT (6 CREDIT HOURS)
*One of these two history courses is required:
- HIST 1483 U.S. History to 1865
- HIST 1493 U.S. History Since 1865
- POLS 1113 U.S. Government (required)

SOCIAL SCIENCE, TECHNOLOGY & LANGUAGE (6 CREDIT HOURS)
- CS 1013 Computer Literacy & Applications
- GEOG 2243 Fundamentals of Geography
- PSYC 1113 Introductory Psychology
- PSYC 2313 Psychology of Personal Adjustment
- PSYC 2583 Developmental Psychology
- SOC 1113 Introductory Sociology
- SPAN 1115 Elementary Spanish I
- SPAN 1215 Elementary Spanish II

Students should consult with their advisor, for major area of interest.
Office Information Systems Technology#

Associate in Applied Science (60 credit hours)

The Office Information Systems program is a cooperative alliance program conducted jointly between OSU Institute of Technology and several of Oklahoma's technology centers. Office Information Systems (OIS) courses are offered at the technology centers' campuses. Required general education and support courses are offered at OSU Institute of Technology.

The Office Information Systems Technology program prepares administrative information professionals to perform and coordinate administrative activities; integrate computer applications; use and support word processing, spreadsheet, database, and presentation software applications; secure, store, retrieve and archive information; plan, implement and manage projects; generate documentation; and conduct research. Administrative information specialists work with other professionals in education, health services, law, governmental agencies, and many other organizational environments.

For more detailed information, please contact Arts & Sciences at 918-293-4768.

PROGRAM REQUIREMENTS: 42 CREDIT HOURS

A combination of the following courses and/or other approved courses* to total 42 credit hours.

- ACCT 2043 Cost Accounting
- ACCT 2103 Financial Accounting
- ACCT 2203 Managerial Accounting
- ACCT 2303 Intermediate Accounting I
- BADM 1113 Introduction to Business
- BADM 2153 Marketing Principles
- BADM 2063 Business Law I
- BADM 2323 Microcomputer Accounting Applications
- BADM 2513 Principles of Finance
- GTIT 1133 Computer Literacy and Applications
- MGMT 2243 Small Business Management
- MGMT 2313 Principles of Management
- OIS 1013 Office Procedures
- OIS 1113 Legal Terminology I
- OIS 1143 Desktop Publishing
- OIS 1153 Medical Terminology I
- OIS 1173 Medical Terminology II
- OIS 1282 Records Management
- OIS 1323 Keyboarding
- OIS 1333 Document Production
- OIS 1343 Advanced Document Production
- OIS 1373 Business Communications
- OIS 1383 Customer Service (Capstone)
- OIS 1413 Business Computer Applications
- OIS 1423 Integrated Applications
- OIS 2101 Employment Orientation
- OIS 2503 Database Application
- OIS 2526 Medical Transcription I
- OIS 2573 ICD-9-CM Coding
- OIS 2583 Electronic Medical Office Procedures
- OIS 2593 Medical Office Procedures
- OIS 2683 Project Management
- OIS 2853 Legal Terminology II
- OIS 2863 Legal Terminology III

GENERAL EDUCATION REQUIREMENTS: 18 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT HOURS)
- ENGL 1113 Freshman Composition I
- ENGL 1213 Freshman Composition II
- ENGL 2033 Technical Writing II

HISTORY (3 CREDIT HOURS)
One of these two History courses required:
- HIST 1483 U.S. History to 1865
- HIST 1493 U.S. History Since 1865

POLITICAL SCIENCE (3 CREDIT HOURS)
- POLS 1113 U.S. Government

ORAL COMMUNICATIONS (3 CREDIT HOURS)
- SPCH 1113 Intro to Speech Communications*
- SPCH 2313 Small Group Communications
 *Recommended for transfer students.

APPROVED GENERAL EDUCATION ELECTIVE (3 CREDIT HOURS)

This program is part of a cooperative alliance agreement and major courses are available at select career technology centers.

*Other courses may be accepted at the discretion of the Arts & Sciences Division.
OSU Institute of Technology offers an associate in science degree in pre-education where students earn the first two years of a bachelor’s degree in science and social science at this campus a simple and seamless process.

The OSU Institute of Technology pre-education degree has been carefully coordinated with other colleges to ensure the student will meet necessary state requirements in math, English, science, and foreign language at four-year institutions.

Whether one’s goal is to explore a career as an elementary, secondary, or college educator, the solid core of education and general studies courses offered by OSU Institute of Technology is a great first step.

For more detailed information, please contact Arts & Sciences at 918-293-4768.

Those students majoring in Elementary Education, Early Childhood Education, or Special Education who seek certification in Oklahoma must take 12 credit hours in each of the four areas: English, math, science, and social studies. Students majoring in Elementary Education, Early Childhood Education, or Special Education must also demonstrate listening and speaking skills in a foreign language at the novice-high level. Successful completion of SPAN 1115 or SPAN 1225 would satisfy this requirement.

Associate in Science (60 credit hours)

OSU Institute of Technology offers an associate in science degree in pre-education where students earn the first two years of a bachelor’s degree in science and social science at this campus a simple and seamless process.

The OSU Institute of Technology pre-education degree has been carefully coordinated with other colleges to ensure the student will meet necessary state requirements in math, English, science, and foreign language at four-year institutions.

Whether one’s goal is to explore a career as an elementary, secondary or college educator, the solid core of education and general studies courses offered by OSU Institute of Technology is a great first step.

For more detailed information, please contact Arts & Sciences at 918-293-4768.

Those students majoring in Elementary Education, Early Childhood Education, or Special Education who seek certification in Oklahoma must take 12 credit hours in each of the four areas: English, math, science, and social studies. Students majoring in Elementary Education, Early Childhood Education, or Special Education must also demonstrate listening and speaking skills in a foreign language at the novice-high level. Successful completion of SPAN 1115 or SPAN 1225 would satisfy this requirement.

Pre-Education – Elementary, Early Childhood or Special Education

Associate in Science (60 credit hours)

OSU Institute of Technology offers an associate in science degree in pre-education where students earn the first two years of a bachelor’s degree in science and social science at this campus a simple and seamless process.

The OSU Institute of Technology pre-education degree has been carefully coordinated with other colleges to ensure the student will meet necessary state requirements in math, English, science, and foreign language at four-year institutions.

Whether one’s goal is to explore a career as an elementary, secondary, or college educator, the solid core of education and general studies courses offered by OSU Institute of Technology is a great first step.

For more detailed information, please contact Arts & Sciences at 918-293-4768.

Those students majoring in Elementary Education, Early Childhood Education, or Special Education who seek certification in Oklahoma must take 12 credit hours in each of the four areas: English, math, science, and social studies. Students majoring in Elementary Education, Early Childhood Education, or Special Education must also demonstrate listening and speaking skills in a foreign language at the novice-high level. Successful completion of SPAN 1115 or SPAN 1225 would satisfy this requirement.

Program Requirements: 55 Credit Hours

Courses taken in communications, mathematics, science and social science must be completed with a grade of “C” or higher for the course to satisfy degree requirements.

Communication Arts (9 Credit Hours)

ENGL 1113 Freshman Composition I (required)
ENGL 1213 Freshman Composition II (required)
ENGL 2113 Creative Writing
ENGL 2413 Introduction to Literature
ENGL 2773 Survey of American Literature I
ENGL 2883 Survey of American Literature II

Computer Literacy (3 Credit Hours)

CS 1013 Computer Literacy & Applications

Health & Physical Education (3 Credit Hours)

HHP 1113 Personal Health or NSCI 1113 Introduction to Nutrition

Mathematics (6 Credit Hours)

Select from courses designated with an “A”.
MATH 1493 Math for Critical Thinking
MATH 1513 College Algebra
MATH 1613 Trigonometry
MATH 2713 Elementary Calculus
MATH 2144 Calculus I

HUMANITIES (6 Credit Hours)

Choose two courses from selection designated with an “H”, “I”, “D”.
ENGL 2413 Introduction to Literature I
ENGL 2543 Survey of English Literature I
ENGL 2653 Survey of English Literature II
ENGL 2773 Survey of American Literature I
ENGL 2883 Survey of American Literature II
HIST 1613 Western Civilization to 1500
HIST 1623 Western Civilization After 1500
HUM 1014 Humanities I
HUM 1033 Humanities II
HUM 1113 Music Appreciation
HUM 2243 Native Peoples of North America
HUM 2453 Introduction to Film
HUM 2563 Comparative Cultures
HUM 2663 Stdy/Trav/Wrk across Cultural Borders
PHIL 1213 Ethics

ORIENTATION (1 Credit Hour)

ORIE 1011 College Strategies

Science (12 Credit Hours)

Must select one (1) course from each area

Biological Sciences

BIOL 1014 General Biology (Non-Majors)
BIOL 1114 General Biology
BIOL 1404 General Botany
BIOL 1604 Zoology
BIOL 2104 Human Anatomy
BIOL 2114 Human Physiology
BIOL 2124 General Microbiology

Physical Sciences

CHEM 1314 General Chemistry I
CHEM 1515 General Chemistry II
GEOL 1014 Earth Science
PHYS 1114 General Physics I
PHYS 1204 General Physical Science

U.S. History & U.S. Government (6 Credit Hours)

*One of these two history courses is required:
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865
POLS 1113 U.S. Government (required)

Social & Behavioral Sciences

Additional credit hours can be selected from courses designated with an “S”.
GEOG 2243 Fundamentals of Geography
PSYC 1113 Introductory Psychology
PSYC 2583 Developmental Psychology
SOC 1113 Introductory Sociology

Oral Communications (3 Credit Hours)

SPCH 1113 Intro to Speech Communications

Electives (5-8 Credit Hours)

Students need to select courses which will satisfy the transfer requirements for the baccalaureate degree at the institution to which they will transfer. Students should choose courses that were NOT used to satisfy the general education requirements.

HIST 2323 Oklahoma History
(Note: This course satisfies the Oklahoma State Department of Education requirement for teacher certification.)

ASL 1363 American Sign Language
PSYC 2313 Psychology of Personal Adjustment
PSYC 2583 Developmental Psychology
SOC 1113 Introductory Sociology
SPAN 1115 Elementary Spanish I
SPAN 1225 Elementary Spanish II

*Recommended for transfer students.
Pre-Education – Secondary Education

Associate in Science (60 credit hours)

OSU Institute of Technology offers an associate in science degree in pre-education where students earn the first two years of a bachelor’s degree in education at this campus with assurance that all courses will transfer to another Oklahoma college offering a bachelor’s degree in education.

This pre-education degree from OSU Institute of Technology saves the student considerable time, travel and money by allowing one to remain closer to home for the first two years of study.

OSU Institute of Technology’s pre-education degree has been carefully coordinated with other colleges to make the transfer of the 60 semester credit hours earned at this campus a simple and seamless process.

The OSU Institute of Technology pre-education program offers a wide range of course choices for education majors, but is vigilant in its offerings to ensure the student will meet necessary state requirements in math, English, science, social sciences and foreign language at four-year institutions.

Whether one’s goal is to explore a career as an elementary, secondary or college educator, the solid core of education and general studies courses offered by OSU Institute of Technology is a great first step.

For more detailed information, please contact Arts & Sciences at 918-293-4768.

PROGRAM REQUIREMENTS: 45 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT HOURS)
- ENGL 1113 Freshman Composition I
- ENGL 1213 Freshman Composition II

COMPUTER LITERACY (3 CREDIT HOURS)
- CS 1013 Computer Literacy & Applications

HEALTH & PHYSICAL EDUCATION (3 CREDIT HOURS)
- HHP 1113 Personal Health OR NSCI 1113 Introduction to Nutrition

HUMANITIES (6 CREDIT HOURS)
Choose two courses from selection designated with an “H”, “I”, “D”.
- ENGL 2413 Introduction to Literature
- ENGL 2773 Survey of American Literature I
- ENGL 2883 Survey of American Literature II
- HIST 1613 Western Civilization to 1500
- HIST 1623 Western Civilization After 1500
- HUM 1013 Humanities I
- HUM 1033 Humanities II
- HUM 2243 Native Peoples of North America
- HUM 2453 Introduction to Film
- HUM 2563 Comparative Cultures
- HUM 2663 Stdy/Trav/Wrk across Cultural Borders
- PHIL 1213 Ethics

MATHEMATICS (3 CREDIT HOURS)
- MATH 1513 College Algebra
- MATH 1613 Trigonometry
- MATH 2713 Elementary Calculus

ORAL COMMUNICATIONS (3 CREDIT HOURS)
- SPCH 1113 Intro to Speech Communications

ORIENTATION (1 CREDIT HOUR)
- ORIE 1011 College Strategies

SCIENCE (6-9 CREDIT HOURS)
(Must select one (1) course from each area)
- Biological Sciences (3-4 Credit Hours)
 - BIOL 1014 General Biology (Non-Majors)
 - BIOL 1114 General Biology
 - BIOL 1404 General Botany
 - BIOL 1604 Zoology
 - BIOL 2104 Human Anatomy
 - BIOL 2114 Human Physiology
 - BIOL 2124 General Microbiology
- Physical Sciences (3-5 Credit Hours)
 - CHEM 1314 General Chemistry I
 - CHEM 1515 General Chemistry II
 - GEOL 1014 Earth Science
 - PHYS 1114 General Physics I
 - PHYS 1204 General Physical Science

- U.S. HISTORY & U.S. GOVERNMENT (6 CREDIT HOURS)
 *One of these two history courses is required:
 - HIST 1483 U.S. History to 1865 or
 - HIST 1493 U.S. History Since 1865
 - POLS 1113 U.S. Government (required)

- SOCIAL & BEHAVIORAL SCIENCES
 Additional credit hours can be selected from courses designated with an “S”:
 - GEOG 2243 Fundamentals of Geography
 - PSYC 1113 Introductory Psychology
 - PSYC 2583 Developmental Psychology
 - SOC 1113 Introductory Sociology

SUPPORT AND RELATED REQUIREMENTS: 15 CREDIT HOURS

ELECTIVES (15 CREDIT HOURS)
- HIST 2323 Oklahoma History
 (Note: This course satisfies the Oklahoma State Department of Education requirement for teacher certification.)

Students should select courses in this area which will satisfy the transfer requirements for the baccalaureate degree at the institution to which they will transfer. Students should choose from the courses above that were NOT used to satisfy the general education requirements. Student advisement is critical to ensure the courses selected will satisfy the baccalaureate degree.

Students should consult with their advisor, for major area of interest.

And/or Other Departmental Approved Electives
Automotive Collision Repair Technology

Associate in Applied Science (81 credit hours)

Automotive Collision Repair Technicians repair and refinish vehicles that have been involved in accidents. Students in this program will learn how to repair the vehicles to pre-accident condition. When vehicles are damaged this requires repair, replacement and refinishing of exterior and interior vehicle body components.

Graduates of the program are employed as collision technicians and refinish specialists. With experience, graduates qualify for positions as body shop managers, paint specialists, material and equipment representatives, insurance adjusters, shop owners, and refinish equipment specialists.

Students may not have more than two academic deficiencies at the time of enrollment into Collision Repair Technology.

Enrollment accepted fall and spring only.

For more detailed information, please contact the Automotive Collision Repair Technology office at 918-293-5390.

DEPARTMENTAL REQUIREMENTS: 53 CREDIT HOURS

AUTO COLLISION REPAIR TECHNOLOGY (53 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC 1031</td>
<td>Collision Computer Based Training</td>
</tr>
<tr>
<td>AUC 1032</td>
<td>Sectioning Welded Panels</td>
</tr>
<tr>
<td>AUC 1062</td>
<td>Refinishing Procedures & Detailing</td>
</tr>
<tr>
<td>AUC 1101</td>
<td>Collision Career Cornerstone</td>
</tr>
<tr>
<td>AUC 1102</td>
<td>Chassis Analysis</td>
</tr>
<tr>
<td>AUC 1111</td>
<td>Vehicle Design & Energy Management</td>
</tr>
<tr>
<td>AUC 1112</td>
<td>Panel Straightening & Filler Application</td>
</tr>
<tr>
<td>AUC 1121</td>
<td>Collision Estimating</td>
</tr>
<tr>
<td>AUC 1131</td>
<td>Mechanical & Electrical Procedures</td>
</tr>
<tr>
<td>AUC 1212</td>
<td>Refinishing Equipment & Processes</td>
</tr>
<tr>
<td>AUC 1222</td>
<td>Color Analysis</td>
</tr>
<tr>
<td>AUC 1232</td>
<td>Gas Metal Arc Welding</td>
</tr>
<tr>
<td>AUC 1252</td>
<td>Panel Replacement & Alignment</td>
</tr>
<tr>
<td>AUC 1262</td>
<td>Advanced Metal Repair</td>
</tr>
<tr>
<td>AUC 1302</td>
<td>Suspension Alignment & Fundamentals</td>
</tr>
<tr>
<td>AUC 2101</td>
<td>Structural Alignment Procedures</td>
</tr>
<tr>
<td>AUC 2131</td>
<td>Non-Structural Recycled Panels</td>
</tr>
<tr>
<td>AUC 2156</td>
<td>Internship I*</td>
</tr>
<tr>
<td>AUC 2161</td>
<td>Advanced Refinishing Processes I</td>
</tr>
<tr>
<td>AUC 2201</td>
<td>Structural Replacement Procedures</td>
</tr>
<tr>
<td>AUC 2211</td>
<td>Collision Industry Updates & Trends</td>
</tr>
<tr>
<td>AUC 2231</td>
<td>Plastic Repair & Panel Bond</td>
</tr>
<tr>
<td>AUC 2256</td>
<td>Internship II*</td>
</tr>
<tr>
<td>AUC 2261</td>
<td>Advanced Refinishing Processes II</td>
</tr>
<tr>
<td>AUC 2356</td>
<td>Internship III*</td>
</tr>
<tr>
<td>AUC 2411</td>
<td>Refinishing Capstone</td>
</tr>
<tr>
<td>AUC 2521</td>
<td>Non-Structural Capstone</td>
</tr>
<tr>
<td>AUC 2631</td>
<td>Structural Capstone</td>
</tr>
</tbody>
</table>

* Students who have earned college credit in Collision Repair through the Cooperative Alliance while attending an approved Oklahoma Career Tech center may enroll in the following alternate internship courses:

 - AUC 2156 Internship I may be replaced by:
 - # AUC 2401 Beginning Internship I AND
 - ## AUC 2415 Advanced Internship I
 - AUC 2256 Internship II may be replaced by:
 - # AUC 2531 Beginning Internship II AND
 - ## AUC 2535 Advanced Internship II
 - AUC 2356 Internship III may be replaced by:
 - # AUC 2641 Beginning Internship III AND
 - ## AUC 2645 Advanced Internship III

 # Course available at participating Career Tech centers.

 ## Course available on the OSUIT campus.

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

BEHAVIORAL SCIENCES (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 1113</td>
<td>Introductory Psychology</td>
</tr>
<tr>
<td>PSYC 2313</td>
<td>Psychology of Personal Adjustment</td>
</tr>
<tr>
<td>SOC 1113</td>
<td>Introductory Sociology</td>
</tr>
</tbody>
</table>

COMMUNICATION ARTS (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1033</td>
<td>Technical Writing I</td>
</tr>
<tr>
<td>ENGL 1113</td>
<td>Freshman Composition I</td>
</tr>
</tbody>
</table>

GENERAL BUSINESS (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BADM 1113</td>
<td>Introduction to Business</td>
</tr>
<tr>
<td>ECON 2033</td>
<td>Micro Economics</td>
</tr>
<tr>
<td>ECON 2203</td>
<td>Macro Economics</td>
</tr>
<tr>
<td>MGMT 2243</td>
<td>Small Business Management</td>
</tr>
</tbody>
</table>

HISTORY (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 1483</td>
<td>U.S. History to 1865</td>
</tr>
<tr>
<td>HIST 1493</td>
<td>U.S. History Since 1865</td>
</tr>
</tbody>
</table>

MATHEMATICS (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1513</td>
<td>College Algebra</td>
</tr>
<tr>
<td>MATH 2003</td>
<td>Business Mathematics</td>
</tr>
</tbody>
</table>

PHILOSOPHY (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 1213</td>
<td>Ethics</td>
</tr>
</tbody>
</table>

POLITICAL SCIENCE (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 1113</td>
<td>U.S. Government</td>
</tr>
</tbody>
</table>

ORAL COMMUNICATIONS (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPCH 1113</td>
<td>Introduction to Speech Communications</td>
</tr>
<tr>
<td>SPCH 2313</td>
<td>Small Group Communication</td>
</tr>
</tbody>
</table>

INTERDEPARTMENTAL REQUIREMENTS: 4 CREDIT HOURS

GENERAL TECHNOLOGIES (4 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTGE 1111</td>
<td>College Cornerstone</td>
</tr>
<tr>
<td>CS 1013</td>
<td>Computer Literacy & Applications</td>
</tr>
</tbody>
</table>
Automotive Service Technology – Ford ASSET

Associate in Applied Science (89 credit hours)

The ASSET program is an automotive service technician program sponsored by Ford Motor Company. The student spends six semesters alternating study and practice on campus and at a dealership. This unique design allows each potential technician to immediately apply automotive service principles and techniques to the real world of work.

Students spend seven and one half weeks of each semester on campus and seven and one half weeks as a paid intern at a Ford Motor Company dealership.

When successfully completed, students earn an Associate in Applied Science degree and become technicians for a Ford Motor Company dealership, usually at the same location as the internship.

Enrollment accepted fall only.

PROGRAM ENTRY REQUIREMENTS:

1. Meet institutional requirements and
2. Obtain an approved dealer sponsor.

For more detailed information, please contact the Automotive Service Technology office at 918-293-5390.

DEPARTMENTAL REQUIREMENTS: 61 CREDIT HOURS

FORD ASSET (61 CREDIT HOURS)
AUMF 1011 Career Cornerstone: Intro to Automotive Service
AUMF 1033 Ford Basic Electrical
AUMF 1103 Internship
AUMF 1111 Ford Computer Based Training
AUMF 1113 Ford Engine Repair
AUMF 1203 Internship
AUMF 1211 Ford Computer Based Training
AUMF 1233 Ford Base & Electrical Suspension & Steering
AUMF 1243 Ford Electronic System Diagnosis
AUMF 1303 Internship
AUMF 1333 Ford Computer Based Training
AUMF 1353 Ford Engine Performance Theory & Operation
AUMF 1363 Ford Manual Trans/Transaxle & Driveline Repair
AUMF 2103 Internship
AUMF 2203 Internship
AUMF 2411 Ford Computer Based Training
AUMF 2453 Ford Engine Performance Diagnosis & Testing
AUMF 2473 Ford Brake Systems & Advanced Brake Diagnosis
AUMF 2511 Ford Computer Based Training
AUMF 2533 Ford Diesel Engine Performance Diagnosis
AUMF 2573 Ford Transfer Case/4WD Diagnosis & System Repair
AUMF 2611 Ford Computer Based Training
AUMF 2613 Ford Automatic Transmission Repair & Electrical
AUMF 2683 Ford Capstone
AUMF 2693 Ford Climate Control

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

BEHAVIORAL SCIENCES (3 CREDIT HOURS)
PSYC 1113 Introductory Psychology or
PSYC 2313 Psychology of Personal Adjustment or
SOC 1113 Introductory Sociology

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1033 Technical Writing I and
ENGL 2033 Technical Writing II or
SPCH 1113 Intro to Speech Communications or
ENGL 1113 Freshman Composition I and
ENGL 1213 Freshman Composition II or
SPCH 1113 Introduction to Speech Communications

GENERAL BUSINESS (3 CREDIT HOURS)
BADM 1113 Introduction to Business
ECON 2103 Microeconomics
ECON 2203 Macroeconomics
MGMT 2243 Small Business Management

HISTORY (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865

MATHEMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra or
MATH 2003 Business Mathematics

PHILOSOPHY (3 CREDIT HOURS)
PHIL 1213 Ethics

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

INTERDEPARTMENTAL REQUIREMENTS: 4 CREDIT HOURS

GENERAL TECHNOLOGIES (4 CREDIT HOURS)
GTGE 1111 College Cornerstone
CS 1013 Computer Literacy & Applications
Automotive Service Technology – GM ASEP

Associate in Applied Science (89 credit hours)

The General Motors sponsored GM-ASEP program prepares students to become automotive service technicians in high tech General Motors dealerships located throughout the country.

Alternating sessions of on-campus study and paid internships for six semesters leads to the Associate in Applied Science degree. This method of alternating study with the internship is a highly successful method of quickly preparing new technicians for this rapidly growing field.

Most graduates start work as GM technicians at the dealership where they interned.

Enrollment accepted fall only.

PROGRAM ENTRY REQUIREMENTS

1. Meet institutional requirements and
2. Obtain an approved dealer sponsor.

For more detailed information, please contact the Automotive Service Technology office at 918-293-5390.

DEPARTMENTAL REQUIREMENTS: 62 CREDIT HOURS

GENERAL MOTORS (62 CREDIT HOURS)

AUMG 1062 College & Career Cornerstone: Intro to GM Automotive Service
AUMG 1122 GM Automotive Engines I
AUMG 1132 GM Automotive Engines II
AUMG 1142 GM Automotive Brake Systems I
AUMG 1152 GM Automotive Brake Systems II
AUMG 1162 GM Specialized Electronics Training I
AUMG 1172 GM Specialized Electronics Training II
AUMG 1214 Internship
AUMG 1272 GM Manual Drivetrain I
AUMG 1292 GM Steering & Suspension I
AUMG 1302 GM Automotive Electrical Systems I
AUMG 1312 GM Manual Drivetrain II
AUMG 1314 Internship
AUMG 1322 GM Steering & Suspension II
AUMG 1342 GM Automotive Electrical Systems II
AUMG 2522 GM Automatic Transmissions & Transaxles I
AUMG 2532 GM Automotive Heating & Air Conditioning I
AUMG 2544 Internship
AUMG 2582 GM Automotive Engine Performance
AUMG 2632 GM Automatic Transmissions & Transaxles II
AUMG 2672 GM Automotive Heating & Air Conditioning II
AUMG 2682 GM Capstone
AUMG 2812 Internship (12 credit hours)

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

BEHAVIORAL SCIENCES (3 CREDIT HOURS)

PSYC 1113 Introductory Psychology or
PSYC 2313 Psychology of Personal Adjustment or
SOC 1113 Introductory Sociology

COMMUNICATION ARTS (3 CREDIT HOURS)

ENGL 1033 Technical Writing I or
ENGL 1113 Freshman Composition I

GENERAL BUSINESS (3 CREDIT HOURS)

BADM 1113 Introduction to Business
ECON 2103 Microeconomics
ECON 2203 Macroeconomics
MGMT 2243 Small Business Management

HISTORY (3 CREDIT HOURS)

HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865

MATHEMATICS (3 CREDIT HOURS)

MATH 1513 College Algebra or
MATH 2003 Business Mathematics

PHILOSOPHY (3 CREDIT HOURS)

PHIL 1213 Ethics

POLITICAL SCIENCE (3 CREDIT HOURS)

POLS 1113 U.S. Government

ORAL COMMUNICATIONS OR COMMUNICATION ARTS (3 CREDIT HOURS)

SPCH 1113 Intro to Speech Communications or
ENGL 2033 Technical Writing II

INTERDEPARTMENTAL REQUIREMENTS: 3 CREDIT HOURS

GENERAL TECHNOLOGIES (3 CREDIT HOURS)

CS 1013 Computer Literacy & Applications
Automotive Service Technology – MOPAR CAP

Associate in Applied Science (90 credit hours)

The College Automotive Program (CAP) is a six semester Associate in Applied Science degree program designed to prepare graduates to work as a Chrysler, Jeep or Dodge Service Technician.

The unique aspect of this program is its alternating internships. A student intensively studies and applies service techniques in OSU Institute of Technology's outstanding automotive service technology facilities for half of each semester. The other half of each semester is spent in a paid internship at a dealer in the hometown area of the student, where the student is able to immediately apply what was learned.

This rotation is repeated for six semesters with the level of competency development increasing until graduation when the student internship is typically converted to full time employment.

Enrollment accepted fall only.

PROGRAM ENTRY REQUIREMENTS:

1. Meet institutional requirements and
2. Obtain an approved dealer sponsor.

For more detailed information, please contact the Automotive Service Technology office at 918-293-5390.
Automotive Service Technology – PRO-TECH

Associate in Applied Science (89 credit hours)

The Pro-Tech Automotive Service Technology Program is a cooperative two-year college level student technician-training program, which leads to an Associate in Applied Science degree with a major in Automotive Technology.

The Automotive Technology Department administers the Program’s activities working in close relationship with automotive service industry associations, suppliers and distributors.

The program is by and for professional automotive independent service centers. The student spends six semesters alternating study and practice on campus and at an independent service center. This unique design allows each potential technician to immediately apply automotive service principles and techniques to the real world of work.

The plan calls for seven and one half weeks of each semester on campus and seven and one half weeks as a paid intern at an independent service center.

Enrollment accepted fall only.

For more detailed information, please contact the Automotive Service Technology office at 918-293-5390.

DEPARTMENTAL REQUIREMENTS: 59 CREDIT HOURS

AUTOMOTIVE TECHNOLOGY (59 CREDIT HOURS)
AU MP 1031 Career & College Cornerstone
AU MP 1051 Automotive Engines I
AU MP 1052 Automotive Engines II
AU MP 1055 Internship I or
AU MP 1901 Internship I # and
AU MP 1904 Electrical/Electronic Skills *
AU MP 1907 Automotive Engines I Training
AU MP 1908 Electrical/Electronics II Training
AU MP 1202 Electrical Diagnosis
AU MP 1231 Automotive Brake Systems I
AU MP 1242 Automotive Brake Systems II
AU MP 1281 Automotive Suspension & Steering I
AU MP 1282 Automotive Suspension & Steering II
AU MP 1285 Internship II or
AU MP 1912 Brake Skills I * and
AU MP 1913 Internship II #
AU MP 1371 Automotive Manual Drivetrain I
AU MP 1372 Automotive Manual Drivetrain II
AU MP 1391 Automotive Automatic Transmissions/ Transaxles I
AU MP 1392 Automotive Automatic Transmissions/ Transaxles II
AU MP 1395 Internship III or
AU MP 1931 Internship III # and
AU MP 1934 Suspension & Steering Skills *
AU MP 2471 Automotive Engine Performance I
AU MP 2472 Automotive Engine Performance II
AU MP 2475 Internship IV or
AU MP 1922 Brake Skills II * and
AU MP 1923 Internship IV #
AU MP 2591 Automotive Heating & AC I
AU MP 2592 Automotive Heating & AC II
AU MP 2595 Internship V or
AU MP 1941 Internship V # and
AU MP 1944 Engine Performance Skills *
AU MP 2694 Automotive Capstone
AU MP 2782 Advanced Automotive Diagnostics

* These courses can be taken at participating Alliance Technology Centers

Internship courses for career technology center graduates who have earned credit while attending an approved Alliance Technology Center

GENERAL EDUCATION REQUIREMENTS: 27 CREDIT HOURS

BEHAVIORAL SCIENCES (3 CREDIT HOURS)
PSY 1113 Introductory Psychology
PSY 2313 Psychology of Personal Adjustment
SOC 1113 Introductory Sociology

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1033 Technical Writing I
ENGL 2033 Technical Writing II

GENERAL BUSINESS (3 CREDIT HOURS)
BADM 1113 Introduction to Business
ECON 2103 Microeconomics
ECON 2203 Macroeconomics
MGMT 2243 Small Business Management

HISTORY (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865
HIST 1493 U.S. History Since 1865

MATHEMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra
MATH 2003 Business Mathematics

PHILOSOPHY (3 CREDIT HOURS)
PHIL 1213 Ethics

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 1113 Intro to Speech Communications
SPCH 2313 Small Group Communications

INTERDEPARTMENTAL REQUIREMENTS: 3 CREDIT HOURS

GENERAL TECHNOLOGIES (3 CREDIT HOURS)
CS 1013 Computer Literacy & Applications
Automotive Service Technology – Toyota T-TEN

Associate in Applied Science (84 credit hours)

The student who enrolls in and successfully completes the Toyota T-TEN (Technician Training and Education Network) program can expect to graduate in two years with an Associate in Applied Science degree.

This program is unique because it allows a student to alternate on-campus learning experience seven and one-half weeks with paid dealership internship experiences seven and one-half weeks.

This perfect combination of study and application for six semesters leads to a job as a highly qualified Toyota or Lexus technician.

Enrollment accepted fall only.

PROGRAM ENTRY REQUIREMENTS:

1. Meet institutional requirements and
2. Obtain an approved dealer sponsor.

For more detailed information, please contact the Automotive Service Technology office at 918-293-5390.
Gaming

Associate in Applied Science (61 credit hours)

Within the state of Oklahoma, Native American tribes operate more than 80 gaming centers with revenue estimated at more than one billion dollars and provide employment that exceeds 4,000 people. Nationwide, Indian gaming is a multi-billion dollar industry generated by 354 tribal operations and provides more than 400,000 jobs from entry-level positions to high-level managers and executives. This degree program will help fulfill this ever-growing need for a well-trained employee.

Gaming occupations require workers to be licensed by a regulatory agency. Some positions are associated with oversight and direction — supervision, surveillance, and investigation — while others involve working with the games or patrons themselves, performing such activities as tending electronic game machines, handling money, writing and running tickets, and dealing cards or running games. This academic program focuses on the service and management aspect of a casino; the training of technicians is not included as part of the program. Gaming personnel need excellent communication skills, an outgoing personality, and the ability to maintain their composure even when dealing with angry or demanding patrons. Personal integrity also is important, because workers handle large amounts of money. Supervisors must have a broad knowledge of casino rules, regulations, procedures and games. They must have strong leadership, organizational, and communication skills. Excellent customer service and employee skills are also necessary.

This degree program is offered under the accreditation status of OSU Institute of Technology to students who are interested in developing knowledge, skills, and competence to become effective employees of the tribal gaming enterprise. This academic program focuses on the service and management aspect of a casino. Program graduates are in high demand at the tribal casino operations around the service area and Oklahoma sites.

This program is a partnership between OSU Institute of Technology and the College of the Muscogee Nation.

For program specific information, please contact the College of the Muscogee Nation office at 918-549-2800 or tcollage@muscogeneration-nsn.gov.

DEPARTMENTAL REQUIREMENTS: 33 CREDIT HOURS

GAMING CORE (12 CREDIT HOURS)
- GAM 1103 Introduction to Native American/ Oklahoma Gaming
- GAM 2203 Casino Mathematics
- GAM 2213 Native American Gaming Law
- GAM 2313 Native American Gaming Regulations & Compliance

CASINO OPERATIONS OPTION (18 CREDIT HOURS)
- GAM 1123 Supervision and Protection of Casino Games I
- GAM 1133 Basic Games Operations
- GAM 2103 Casino Operations Management
- GAM 2113 Electronic Games Management
- GAM 2123 Supervision and Protection of Casino Games II
- GAM 2303 Techniques of Casino Dealing

GAMING MARKETING OPTION (18 CREDIT HOURS)
- ACCT 2103 Financial Accounting
- GAM 1233 Customer Service Strategies
- GAM 1313 Gaming Advertising
- GAM 2113 Hospitality Marketing
- GAM 2223 Player Trends and Tracking
- GAM 2233 Public Relations

GAMING MANAGEMENT OPTION (18 CREDIT HOURS)
- ACCT 2103 Financial Accounting
- MGMT 2603 Human Resource Management
- GAM 1413 Introduction to the Casino Industry
- GAM 2103 Casino Operations Management
- GAM 2113 Electronic Games Management
- GAM 2303 Techniques of Casino Dealing

HOSPITALITY-CUSTOMER RELATIONS OPTION (18 CREDIT HOURS)
- CUA 1214 Dining Room Operations
- CUA 1162 Food Service Management
- GAM 1233 Customer Service Strategies
- GAM 2133 Hospitality Marketing
- GAM 2233 Public Relations
- GAM 2423 Introduction to Hospitality Management

DEPARTMENTAL APPROVED ELECTIVES (3 CREDIT HOURS)
- CUA Elective
- GAM 1323 Beverage Management
- GAM 2143 Basic Room Operations
- GAM 2323 Supervision
- GAM 2413 Casino Security

GENERAL EDUCATION REQUIREMENTS: 28 CREDIT HOURS

COLLEGE CORNERSTONE (1 CREDIT HOUR)
- MVSK 1111 College Cornerstone

COMPUTER LITERACY (3 CREDIT HOURS)
- CS 1013 Computer Literacy & Applications OR MVSK 2413 Computer Security

COMMUNICATION ARTS (6 CREDIT HOURS)
- ENGL 1133 Freshman Composition I and ENGL 1213 Freshman Composition II

HISTORY (3 CREDIT HOURS)
- HIST 1493 U.S. History Since 1865
- HIST 1483 U.S. History to 1865

MATHEMATICS (3 CREDIT HOURS)
- MATH 1473 Mathematical Structures I
- MATH 2003 Business Mathematics

NATIVE AMERICAN ELECTIVE (3 CREDIT HOURS)
- MVSK 1113 Native American History
- MVSK 1213 Native American Tribal Government

POLITICAL SCIENCE (3 CREDIT HOURS)
- POLS 1113 U.S. Government

ORAL COMMUNICATIONS (3 CREDIT HOURS)
- SPCH 2313 Small Group Communications

TRIBAL LANGUAGE (3 CREDIT HOURS)
- MVSK 1123 Beginning Creek Language
Air Conditioning & Refrigeration Technology

Associate in Applied Science (90 credit hours)

Reap the career rewards of job security and variety and make great money with an Associate in Applied Science Degree in Air Conditioning and Refrigeration Technology from OSU Institute of Technology at Okmulgee.

Graduates are sought after in this field because the construction industry nationwide needs at least 210,000 new technicians each year for the next ten years to meet its demands.

The national average pay is $35,000 to $45,000, and some make $75,000 or more. Recent graduates averaged about $38,000 to $50,000 a year.

Businesses in this field also provide insurance and benefits and many pay bonuses.

With an ACR Technology Degree, graduates may work for a small company with one or two technicians or a Fortune 500 firm. This career option allows the graduate the flexibility to work on ice-making machines down the street or an oil platform in the Gulf of Mexico.

An ACR Technology degree will prepare you to work in nine specialty areas that include more than 25 different positions.

OSU Institute of Technology has produced quality technicians for more than 60 years. Remarkably, the program has placed 90 percent of graduates for the last 20 years.

One hundred percent of our recent graduates who wanted a job, got one, and many had multiple job offers. OSU Institute of Technology's four classrooms and eight working labs set us apart from other programs.

Some of these are:
- Electrical controls with many, many trainers
- Unitary refrigeration with 20 ice machines
- Systems controls (teaching DDC and Energy Management Systems)
- Commercial refrigeration and its equipment

The program includes classroom work and ample hands-on lab work. You will have two eight-week paid company-sponsored internships where you will make $10 to $15 per hour. While this will help you pay for your education, other financial help is available.

With an ACR Technology Degree from OSU Institute of Technology, you can have the great career you want.

Enrollment in Internships requires department approval and 2.5 GPA.

Contact the Air Conditioning & Refrigeration Technology Program office today for more detailed information, at 918-293-5304.

DEPARTMENTAL REQUIREMENTS:
63 CREDIT HOURS

AIR CONDITIONING & REFRIGERATION TECHNOLOGY
(63 CREDIT HOURS)

ACR 1111 EPA Certification Information
ACR 1121 Introduction to Air Conditioning & Refrigeration Technology
ACR 1126 ACR System Application
ACR 1203 Electrical Controls
ACR 1206 Electrical Control Applications
ACR 1336 Residential Air Conditioning & Heating Systems
ACR 1343 Electronic Control Applications
ACR 1344 Unitary Refrigeration
ACR 2406 Commercial Refrigeration Applications
ACR 2443 Systems Controls
ACR 2513 Air Systems Design
ACR 2603 Commercial Air Conditioning
ACR 2616 Air Conditioning & Refrigeration Technology Capstone
ACR 2806 Internship I
ACR 2906 Internship II
ACR 2912 Internship (Fall Semester)

DEPARTMENTAL ELECTIVES:
3 CREDIT HOURS

GENERAL EDUCATION REQUIREMENTS: 21 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1113 Freshman Composition I and
ENGL 1213 Freshman Composition II or
ENGL 1033 Technical Writing I and
ENGL 2033 Technical Writing II

HIST (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865

HUMANITIES (3 CREDIT HOURS)
HUM 1013 Humanities I
HUM 1033 Humanities II
HUM 2243 Native Peoples of North America
PHIL 1213 Ethics
PHIL 1313 Introduction to Logic

MATHEMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra or
MATH 2003 Business Mathematics

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 1113 Introduction to Speech Communications or
SPCH 2313 Small Group Communications

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

INTERDEPARTMENTAL REQUIREMENTS: 3 CREDIT HOURS

GENERAL TECHNOLOGIES
(3 CREDIT HOURS)
CS 1013 Computer Literacy & Applications
Construction Technology – Construction Management

Associate in Applied Science (90 credit hours)

The construction industry, with 7.2 million workers, represents 5.7% of our nation’s workforce. Continued strong growth in the commercial and retail construction industry, coupled with an aging skilled construction force, means there is a severe shortage of skilled workers. The Bureau of Labor Statistics forecasts a 17% increase in the number of construction management jobs in the 2008-2018 decade faster than average for all occupations.

“The entry level salary range for OSU grads is in the 40s; some start out as high as $52,000 a year,” says an instructor in the program and a former project engineer with Flintco Construction Company. “It also is common to get a signing bonus, moving allowance and benefits.”

Current students and alums agree on the quality of the program.

“It’s a good school,” Ronald Hoggard, an African American student from Nashville, Tenn., says. “I like it here. Instructors are really willing to help you.”

Terrell Hoagland, alumnus and a project engineer for Flintco Construction Company, says, “The quality of the faculty is excellent. The instructors make the program.”

The ideal recruit has a good work ethic, is a hands-on learner, a problem solver, and has good people skills. A construction background and a minority or female status are plusses.

Graduates from the Construction Management Option begin careers in the industry as entry level managers and can expect opportunities with general contractors, subcontractors, material suppliers or other industry related businesses. The degree program emphasizes supervisory, administrative, and management responsibilities coupled with technical hands-on knowledge. Graduates can qualify for positions such as office engineer, field engineer, safety engineer, superintendent, project engineer, foreman, estimator, scheduler, expeditor, quality control engineer, inspector, or independent contractor.

Enrollment in Internships requires department approval and 2.5 GPA.

For more detailed information, please contact the Construction Technologies office at 918-293-4742.

DEPARTMENTAL REQUIREMENTS: 63 CREDIT HOURS

CONSTRUCTION TECHNOLOGY (38 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS 1111</td>
<td>Introduction to Construction</td>
</tr>
<tr>
<td>CNS 1113</td>
<td>Construction Materials & Procedures</td>
</tr>
<tr>
<td>CNS 1123</td>
<td>Field Engineering I</td>
</tr>
<tr>
<td>CNS 1223</td>
<td>Field Engineering II</td>
</tr>
<tr>
<td>CNS 1333</td>
<td>Field Engineering III</td>
</tr>
<tr>
<td>CNS 1202</td>
<td>Construction Blueprints and Specifications</td>
</tr>
<tr>
<td>CNS 1213</td>
<td>Construction Safety</td>
</tr>
<tr>
<td>CNS 1303</td>
<td>Estimating I</td>
</tr>
<tr>
<td>CNS 2403</td>
<td>Project Scheduling</td>
</tr>
<tr>
<td>CNS 2413</td>
<td>Mechanical Systems</td>
</tr>
<tr>
<td>CNS 2432</td>
<td>Construction Documents and Shop Drawing Review</td>
</tr>
<tr>
<td>CNS 2543</td>
<td>Concrete Construction</td>
</tr>
<tr>
<td>CNS 2683</td>
<td>CM Capstone Experience</td>
</tr>
<tr>
<td>CNS 2693</td>
<td>Principles of Construction Management</td>
</tr>
</tbody>
</table>

BUILDING CONSTRUCTION (19 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLD 2303</td>
<td>Estimating II</td>
</tr>
<tr>
<td>BLD 2503</td>
<td>Wall & Roof Systems</td>
</tr>
<tr>
<td>BLD 2513</td>
<td>Interior Finishes & Specialties</td>
</tr>
<tr>
<td>BLD 2805</td>
<td>Construction Internship</td>
</tr>
<tr>
<td>BLD 2905</td>
<td>Construction Internship</td>
</tr>
</tbody>
</table>

REQUIRED ELECTIVE (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS 2093</td>
<td>Special Project: Property of Soils</td>
</tr>
</tbody>
</table>

APPROVED ELECTIVE (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1013</td>
<td>College Algebra</td>
</tr>
<tr>
<td>ENGL 1613</td>
<td>Trigonometry</td>
</tr>
<tr>
<td>HIST 1483</td>
<td>U.S. History to 1865</td>
</tr>
<tr>
<td>HIST 1493</td>
<td>U.S. History Since 1865</td>
</tr>
<tr>
<td>HUM 1013</td>
<td>Humanities I</td>
</tr>
<tr>
<td>HUM 1033</td>
<td>Humanities II</td>
</tr>
<tr>
<td>PHIL 1213</td>
<td>Ethics</td>
</tr>
<tr>
<td>PHIL 1313</td>
<td>Introduction to Logic</td>
</tr>
<tr>
<td>SPCH 1113</td>
<td>Introduction to Speech Communications</td>
</tr>
<tr>
<td>SPCH 2313</td>
<td>Small Group Communications</td>
</tr>
<tr>
<td>POLS 1113</td>
<td>U.S. Government</td>
</tr>
<tr>
<td>CS 1013</td>
<td>Computer Literacy & Applications</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1113</td>
<td>Freshman Composition I</td>
</tr>
<tr>
<td>ENGL 1213</td>
<td>Freshman Composition II</td>
</tr>
<tr>
<td>ENGL 1033</td>
<td>Technical Writing I</td>
</tr>
<tr>
<td>ENGL 2033</td>
<td>Technical Writing II</td>
</tr>
</tbody>
</table>

HISTORY (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 1483</td>
<td>U.S. History to 1865</td>
</tr>
<tr>
<td>HIST 1493</td>
<td>U.S. History Since 1865</td>
</tr>
</tbody>
</table>

HUMANITIES (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUM 1013</td>
<td>Humanities I</td>
</tr>
<tr>
<td>HUM 1033</td>
<td>Humanities II</td>
</tr>
<tr>
<td>PHIL 1213</td>
<td>Ethics</td>
</tr>
<tr>
<td>PHIL 1313</td>
<td>Introduction to Logic</td>
</tr>
</tbody>
</table>

MATHEMATICS (6 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1513</td>
<td>College Algebra</td>
</tr>
<tr>
<td>MATH 1613</td>
<td>Trigonometry</td>
</tr>
</tbody>
</table>

ORAL COMMUNICATIONS (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPCH 1113</td>
<td>Introduction to Speech Communications</td>
</tr>
<tr>
<td>SPCH 2313</td>
<td>Small Group Communications</td>
</tr>
</tbody>
</table>

POLITICAL SCIENCE (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 1113</td>
<td>U.S. Government</td>
</tr>
</tbody>
</table>

INTERDEPARTMENTAL REQUIREMENTS: 3 CREDIT HOURS

GENERAL TECHNOLOGIES (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1013</td>
<td>Computer Literacy & Applications</td>
</tr>
</tbody>
</table>
Construction Technology - Electrical

Associate in Applied Science (90 credit hours)

The skills and education needed to make a great salary, work anywhere in the world, or start a business are as close as an Associate in Applied Science Degree in Electrical Construction from OSU Institute of Technology.

Electrical construction technicians are in great demand all across the country, so let this degree put you in high demand.

Oklahoma employs 6,300 electricians right now, so the chances of getting a job with an Electrical Construction Degree are almost guaranteed. Many jobs are available in the nation and in the world.

In the last several years, graduates who desired to work have been placed in well paying positions. The pay is excellent with an average starting salary of $30,000 to $50,000 a year.

The degree prepares the graduate to work in all areas of the electrical industry—residential, commercial, industrial, field engineer, national electrical code inspector, estimating and design, and the instruction is top notch.

Occupational variety is another reason to consider entering this field. Graduates will work in many individual areas of specialty. Electives shape the specific path — engineering, construction or business.

Graduates may work as:

- An electrical apprentice for an electrical contractor
- A design and engineering assistant for an engineering firm
- A maintenance electrician for a manufacturing plant

Those advancing to journeyman and then electrical contractor could earn a higher salary at each level.

During the program, students experience two eight-week internships at a solid company and make about $14 an hour. While this will help pay for tuition, other financial help is also available.

Enrollment in Internships requires department approval and 2.5 GPA.

If you’re ready to let this degree put you in high demand, contact the Electrical Construction Program today at 918–293–4742.

DEPARTMENTAL REQUIREMENTS: 58 CREDIT HOURS

CONSTRUCTION TECHNOLOGY (11 CREDIT HOURS)

- CNS 1113 Construction Materials & Procedures
- CNS 1202 Construction Blueprints & Specifications
- CNS 1213 Construction Safety OSHA 30 hour
- CNS 2413 Mechanical Systems

ELECTRICAL CONSTRUCTION TECHNOLOGY (41 CREDIT HOURS)

- ECNT 1102 Introduction to the Electrical Trades
- ECNT 1103 DC & AC Circuit Analysis
- ECNT 1233 Electric Motors & Controls
- ECNT 1253 Electrical Wiring Methods I - Residential
- ECNT 1313 National Electrical Codes
- ECNT 2473 Electrical Wiring Methods II - Commercial
- ECNT 2533 Electrical Wiring Methods III - Industrial
- ECNT 2613 PLC for Electricians
- ECNT 2616 HV Electrical Capstone Experience
- ECNT 2806 Internship
- ECNT 2906 Internship

APPROVED ELECTIVES (6 CREDIT HOURS)

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT HOURS)
- ENGL 1113 Freshman Composition I and
- ENGL 1213 Freshman Composition II or
- ENGL 1033 Technical Writing I and
- ENGL 2033 Technical Writing II

HISTORY (3 CREDIT HOURS)
- HIST 1483 U.S. History to 1865
- HIST 1493 U.S. History Since 1865

HUMANITIES (3 CREDIT HOURS)
- HUM 1013 Humanities I
- HUM 1033 Humanities II
- PHIL 1213 Ethics
- PHIL 1313 Introduction to Logic

MATHEMATICS (6 CREDIT HOURS)
- MATH 1513 College Algebra
- MATH 1613 Trigonometry

ORAL COMMUNICATIONS (3 CREDIT HOURS)
- SPCH 1113 Intro to Speech Communications
- SPCH 2313 Small Group Communications

POLITICAL SCIENCE (3 CREDIT HOURS)
- POLS 1113 U.S. Government

INTERDEPARTMENTAL REQUIREMENTS: 8 CREDIT HOURS

GENERAL TECHNOLOGIES (8 CREDIT HOURS)
- CS 1013 Computer Literacy & Applications
- GTCT 1183 Welding
- PLBG 1322 Building Systems Layout
Construction Technology – High Voltage Electricity

Associate in Applied Science (90 credit hours)

A better life is in reach with an Associate in Applied Science degree, specializing in High Voltage Lineman Program from OSU Institute of Technology. Job opportunities and the demand for qualified individuals in this field are great, and even more, considering that 50% of the linemen currently in the trade will be eligible for retirement within the next five to ten years.

High voltage lineman jobs, on average, begin at $45,000 a year. Some pay more.

Many recent graduates have reported an annual salary that averages $57,400, including overtime pay. With the industry expecting 220,000 vacancies in the next five years, it critically needs employees. The most reliable businesses in the country—public service companies, utility construction companies, and power generating plants—want graduates from OSU Institute of Technology to work for them.

However, qualified high tech employees and students are in short supply. Earning this degree from OSU Institute of Technology can place graduates in an exciting, well-paying career with advancement potential right now.

The High Voltage Program is two years in length and features hands-on instruction with equipment used in the industry. Along with classroom and lab work, students get experience in the field through company-sponsored internships.

The Internships are paid and most of the high voltage students are able to pay for their education with the five paid internships.

On average, students make $14.00 per hour and will work an average of 1,800 hours during the five semesters. This totals $25,200. With overtime it is possible to make more.

In keeping with our mission statement, OSUIT is committed to ensuring that our students are able to have personal faculty and peer interaction. To this end, our high voltage program limits the number of students we will accept in any term to 25 students. Students are admitted on a first-come, first-served basis, and must meet additional requirements beyond those for admission to the university.

Enrollment in Internships requires department approval and 2.5 GPA.

For more detailed information, please contact the Construction Technologies office at 918-293-4742.

DEPARTMENTAL REQUIREMENTS: 63 CREDIT HOURS

HIGH VOLTAGE LINEMAN PROGRAM (63 CREDIT HOURS)

HVLP 1133 Introduction to High Voltage Electricity & Safety

HVLP 1216 Internship I

HVLP 1243 High Voltage Pole Climbing Techniques

HVLP 1316 Internship II

HVLP 1353 DC/AC HV Circuit Analysis

HVLP 2416 Internship III

HVLP 2483 Principles of Operations of High Voltage Distribution Systems

HVLP 2516 Internship IV

HVLP 2553 Underground Distribution Systems

HVLP 2563 Overhead Distribution Systems

HVLP 2643 Advanced Distribution Systems

HVLP 2663 Heavy Construction Equipment & Operation

HVLP 2673 Transmission Principles

HVLP 2716 Internship V

HVLP 2726 High Voltage Lineman Capstone Experience

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

BEHAVIORAL SCIENCES (3 CREDIT HOURS)

PSYC 1113 Introductory Psychology

PSYC 2313 Psychology of Personal Adjustment

SOC 1113 Introductory Sociology

COMMUNICATION ARTS (6 CREDIT HOURS)

ENGL 1113 Freshman Composition I and

ENGL 1213 Freshman Composition II or

ENGL 1033 Technical Writing I and

ENGL 2033 Technical Writing II

HISTORY (3 CREDIT HOURS)

HIST 1483 U.S. History to 1865

HIST 1493 U.S. History Since 1865

HUMANITIES (3 CREDIT HOURS)

HUM 1013 Humanities I

HUM 1033 Humanities II

PHIL 1213 Ethics

PHIL 1313 Introduction to Logic

MATHEMATICS (3 CREDIT HOURS)

MATH 1513 College Algebra

MATH 2003 Business Math

ORAL COMMUNICATIONS (3 CREDIT HOURS)

SPCH 1113 Introduction to Speech Communications

SPCH 2313 Small Group Communications

POLITICAL SCIENCE (3 CREDIT HOURS)

POLS 1113 U.S. Government

INTERDEPARTMENTAL REQUIREMENTS: 3 CREDIT HOURS

GENERAL TECHNOLOGIES (3 CREDIT HOURS)

CS 1013 Computer Literacy & Applications
Construction Technology – Masonry Construction

Associate in Applied Science
(90 credit hours)

The Masonry Construction program is a cooperative alliance program conducted jointly between OSU Institute of Technology and several of Oklahoma's career technology centers. Masonry courses are offered exclusively at the technology centers' campuses. Required general education and support courses are offered at OSU Institute of Technology.

The Masonry industry offers vast opportunities with great pay for an individual who has developed skills that are needed in the construction industry. The construction industry, with 7.7 million workers, represents over 5% of our nation's workforce. The value of construction put in place in 2006 totaled $1.2 trillion, 9% of our country's gross domestic product (GDP). Residential spending totaled $639 billion and nonresidential spending totaled $559 billion. Continued strong growth in the commercial and retail construction industry, coupled with an aging skilled construction workforce, means there is a severe shortage of skilled workers. According to the Bureau of Labor Statistics industry job growth change through 2016 will be +10.2% or 784,278 additional construction jobs.

Masonry is one of the oldest skilled crafts and it is used almost everywhere one looks, whether it is on a residential house, an archway in a park, a church building or a multi-story building.

The Masonry program teaches how to take brick, block or rock and create beautiful structures. Students will not only learn to read blueprints, and estimate a job, but will learn to lay-out, line up, and level as well as make arches and curved walls.

Enrollment in Internships requires department approval and 2.5 GPA.

For more detailed information, please contact: Construction Technologies, 918-293-4742, OSU Institute of Technology Cooperative Alliance Coordinator, 918-293-4913.

DEPARTMENTAL REQUIREMENTS:
66 CREDIT HOURS

BUILDING CONSTRUCTION
(3 CREDIT HOURS)
BLD 2303 Estimating II

CONSTRUCTION TECHNOLOGY
(25 CREDIT HOURS)
CNS 1113 Construction Materials & Procedures
CNS 1123 Field Engineering I
CNS 1202 Construction Blueprints & Specifications
CNS 1223 Field Engineering II
CNS 1303 Estimating I
CNS 2403 Project Scheduling
CNS 2413 Mechanical Systems
CNS 2432 Construction Documents & Shop Drawings Review
CNS 2543 Concrete Construction

MASONRY CONSTRUCTION
(32 CREDIT HOURS)
(offered at approved career technology centers)
MASC 1101 Introduction to Masonry
MASC 1103 Masonry Drawings & Specifications
MASC 1105 Masonry Units & Installation Techniques
MASC 1111 Mortar, Tools & Equipment
MASC 1202 Interpretation of Residential Drawings
MASC 1203 Residential Masonry
MASC 1212 Construction Inspection & Quality Control
MASC 1213 Construction Techniques & Moisture Control
MASC 2302 Commercial Drawings
MASC 2305 Specialized Materials & Techniques
MASC 2312 Grout and Other Reinforcement
MASC 2413 Masonry in High-Rise Construction

APPROVED ELECTIVES
(6 CREDIT HOURS)
CNS 1333 Field Engineering III
CS 1013 Computer Literacy & Applications
MGMT 2243 Small Business Management
MASC 2402 Project Planning & Supervision
MASC 2403 Estimating Masonry
MASC 2423 Advanced Laying Techniques
MATH 2003 Business Mathematics

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1113 Freshman Composition I and
ENGL 1213 Freshman Composition II or
ENGL 1033 Technical Writing I and
ENGL 2033 Technical Writing II

HISTORY (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865
HIST 1493 U.S. History Since 1865

HUMANITIES (3 CREDIT HOURS)
HUM 1013 Humanities I
HUM 1033 Humanities II
PHIL 1213 Ethics
PHIL 1313 Introduction to Logic

MATHEMATICS (6 CREDIT HOURS)
MATH 1513 College Algebra
MATH 1613 Trigonometry

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 1113 Introduction to Speech Communications
SPCH 2313 Small Group Communications

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

#This program is part of a cooperative alliance agreement and the masonry construction courses are available only at select career technology centers.
Construction Technology – Residential Construction

Associate in Applied Science (90 credit hours)

The Residential Construction program is a cooperative alliance program conducted jointly between OSU Institute of Technology and several of Oklahoma’s career technology centers. Residential Construction courses are offered exclusively at the technology centers’ campuses. Required general education and support courses are offered at OSU Institute of Technology.

The Residential Construction industry offers vast opportunities with great pay for an individual who has developed skills that are needed in the Construction Industry.

The construction industry, with 7.7 million workers, represents over 5% of our nation’s workforce. The value of construction put in place in 2006 totaled $1.2 trillion, 9% of our country’s gross domestic product (GDP). Residential spending totaled $639 billion and nonresidential spending totaled $559 billion. Continued strong growth in the commercial and retail construction industry, coupled with an aging skilled construction workforce, means there is a severe shortage of skilled workers.

According to the Bureau of Labor Statistics industry job growth change through 2016 will be +10.2% or 784,278 additional construction jobs.

The Residential Construction program teaches carpentry skills that provide students the opportunity to pursue many career choices, for example: frame carpenter, trim carpenter, concrete form carpenter, drywall installer and many others.

The Residential Construction program also prepares students to understand the building process, materials, and the manpower needed to completely build a new residential project from start to finish.

Enrollment in Internships requires department approval and 2.5 GPA.

For more detailed information, please contact: Construction Technologies, 918-293-4742, or OSU Institute of Technology Cooperative Alliance Coordinator 918-293-4913.

DEPARTMENTAL REQUIREMENTS: 66 CREDIT HOURS

BUILDING CONSTRUCTION: (3 CREDIT HOURS)

BLD 2303 Estimating II

CONSTRUCTION TECHNOLOGY (25 CREDIT HOURS)

CNS 1113 Construction Materials & Procedures
CNS 1123 Field Engineering I
CNS 1202 Construction Blueprints & Specifications
CNS 1223 Field Engineering II
CNS 1303 Estimating I
CNS 2403 Project Scheduling
CNS 2413 Mechanical Systems
CNS 2432 Construction Documents & Shop Drawings Review
CNS 2543 Concrete Construction

RESIDENTIAL CONSTRUCTION (32 CREDIT HOURS)

(Offered at approved technology centers)
RESC 1101 Introduction to Residential Construction
RESC 1103 Reading Plans & Elevations
RESC 1113 Site Layout
RESC 1203 Foundations and Flatwork
RESC 1213 Introduction to Concrete & Reinforcing Materials
RESC 1303 Floor Systems
RESC 2313 Walls and Ceiling Systems
RESC 2323 Roof Framing Systems
RESC 2403 Thermal & Moisture Protection
RESC 2413 Interior Finishes
RESC 2424 Capstone or RESC 2454 Internship

APPROVED ELECTIVES (6 CREDIT HOURS)

ACR 1126 ACR System Application
CNS 2693 Principles of Construction Management
CNS 1333 Field Engineering III
ECNT 1253 Electrical Wiring Methods I - Residential
CS 1013 Computer Literacy & Applications
MATH 2003 Business Mathematics
MGMT 2243 Small Business Management

PLBG 1104 Plumbing Systems I
PLBG 1322 Plumbing Layout

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

BEHAVIORAL SCIENCES (3 CREDIT HOURS)

PSYC 1113 Introductory Psychology
PSYC 2313 Psychology of Personal Adjustment
SOC 1113 Introductory Sociology

COMMUNICATION ARTS (6 CREDIT HOURS)

ENGL 1113 Freshman Composition I and
ENGL 1213 Freshman Composition II or
ENGL 1033 Technical Writing I and
ENGL 2033 Technical Writing II

HISTORY (3 CREDIT HOURS)

HIST 1483 U.S. History to 1865
HIST 1493 U.S. History Since 1865

HUMANITIES (3 CREDIT HOURS)

HUM 1013 Humanities I
HUM 1033 Humanities II
PHIL 1213 Ethics
PHIL 1313 Introduction to Logic

MATHEMATICS (3 CREDIT HOURS)

MATH 1513 College Algebra
MATH 2003 Business Math

ORAL COMMUNICATIONS (3 CREDIT HOURS)

SPCH 1113 Introduction to Speech Communications
SPCH 2313 Small Group Communications

POLITICAL SCIENCE (3 CREDIT HOURS)

POLI 1113 U.S. Government

This program is part of a cooperative alliance agreement and residential construction courses are available only at select career technology centers.
Construction Technology – Welding

Associate in Applied Science (90 credit hours)

The Welding program is a cooperative allianve program conducted jointly between OSU Institute of Technology and several of Oklahoma's career technology centers. Welding courses are offered exclusively at the technology centers' campuses. Required general education and construction courses are offered at OSU Institute of Technology.

The Welding and Metal Fabrications industry offers vast opportunities with great pay for an individual who has developed skills that are needed in the Construction Industry. With the nation's Manufacturing industry, Pipeline industry and Construction industry in good upward economical cycle, the demand for skilled welders and fitters are in extremely high demand. There are about 400,000 welders in the United States today. According to the Bureau of Labor Statistics the number of manual welders, especially those with a wide variety of skills, will increasingly be needed for sophisticated fabrication tasks and repair work that do not lend themselves to automation. Many of the job openings for welders will result from the need to replace experienced workers who are retiring. Please go to the American Welding Society web site for more information about careers in Welding.

www.aws.org/education/career.html

In the Welding and Metal Fabrications program students will develop skills in welding, fit-up, fabrication and will possess the skills and knowledge to work at an entry level in the field of structural welding.

Enrollment in Internships requires department approval and 2.5 GPA.

For more detailed information, please contact: Construction Technologies, 918-293-4742 or OSU Institute of Technology Cooperative Alliance Coordinator 918-293-4913.

DEPARTMENTAL REQUIREMENTS: 66 CREDIT HOURS

BUILDING CONSTRUCTION: (3 CREDIT HOURS)
BLD 2303 Estimating II

CONSTRUCTION TECHNOLOGY (25 CREDIT HOURS)
CNS 1113 Construction Materials & Procedures
CNS 1123 Field Engineering I
CNS 1202 Construction Blueprints & Specifications
CNS 1223 Field Engineering II
CNS 1303 Estimating I
CNS 2403 Project Scheduling
CNS 2413 Mechanical Systems
CNS 2432 Construction Documents & Shop Drawings Review
CNS 2543 Concrete Construction

WELDING (32 CREDIT HOURS)
(Offered at approved career technology centers)
WELD 1103 Reading Welding Blueprints
WELD 1113 Oxy-Fuel Welding & PlasmaCutting
WELD 1123 Introduction to Shielded Metal Arc Welding
WELD 1203 Non-Destructive Testing
WELD 1213 Introduction to Gas Tungsten Arc Welding
WELD 1302 Physical Characteristics & Mechanical Properties of Metals
WELD 2313 Introduction to Flux Cored Arc Welding
WELD 2322 Joint Fit-Up and Alignment of Structural Steel
WELD 2323 Electrode Selection & Weld Quality
WELD 2405 Shielded Metal Arc Welding
WELD 2412 Joint Fit-up & Alignment of Pipe

APPROVED ELECTIVES (6 CREDIT HOURS)
CNS 2090 Special Projects
CNS 1333 Field Engineering III
CS 1013 Computer Literacy & Applications
MGMT 2243 Small Business Management
MATH 2003 Business Mathematics
WELD 2402 Welding Design

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

BEHAVIORAL SCIENCES (3 CREDIT HOURS)
PSYC 1113 Introductory Psychology
PSYC 2313 Psychology of Personal Adjustment
SOC 1113 Introductory Sociology

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1113 Freshman Composition I and ENGL 1213 Freshman Composition II or ENGL 1033 Technical Writing I and ENGL 2033 Technical Writing II

HISTORY (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865
HIST 1493 U.S. History Since 1865

HUMANITIES (3 CREDIT HOURS)
HUM 1013 Humanities I
HUM 1033 Humanities II
PHIL 1213 Ethics
PHIL 1313 Introduction to Logic

MATHEMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra
MATH 2003 Business Math

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 1113 Introduction to Speech Communications
SPCH 2313 Small Group Communications

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

#This program is part of a cooperative alliance agreement and welding courses are available only at select career technology centers.
Culinary Arts

Associate in Applied Science (90 credit hours)

This program provides skills and knowledge for the food service industry. Graduates are qualified for food production and supervisory employment. Culinary Arts students learn through hands-on experience in the institution’s food service facilities under the direction of a faculty of experienced chefs. Our facilities include The State Room featuring gourmet buffet experience, and The Tech Room featuring a gourmet a la carte menu. Both serve weekday luncheons. Students demonstrate their creative culinary skills to several hundred diners each week.

Our Graduates are actively recruited by restaurants, country clubs, hotels, schools, and quick serve restaurants. Typical opportunities for recent graduates have included cooks, sous chefs and food production supervisors.

Students cannot have more than one (1) deficiency at the time of enrollment into the Culinary Arts program. Enrollment is accepted for Fall, Spring and Summer terms and is limited to 50 new students each term. Enrollment into the program is on a first-come, first-served basis.

Degree seeking students must have first priority at enrolling in Culinary Arts coursework. Non-degree seeking students may enroll the day prior to classes beginning.

For more detailed information, please contact the Culinary Arts office at 918-293-5030.

DEPARTMENTAL REQUIREMENTS: 62 CREDIT HOURS

CULINARY ARTS (52 CREDIT HOURS)

CUA 1102 Culinary Theory
CUA 1135 Skill Development I
CUA 1145 Skill Development II
CUA 1151 Food Safety
CUA 1162 Food Service Management
CUA 1415 Dining Room Operations
CUA 1294 Breakfast Cookery
CUA 1311 Meat Fabrication
CUA 1375 Bread & Pastry Production
CUA 2415 Garde Manger
CUA 2473 American Cuisine
CUA 2552 Purchasing
CUA 2623 Culinary Arts Capstone
CUA 2809 Culinary Internship

ADDITIONAL PROGRAM REQUIREMENTS: 10 CREDIT HOURS
(Select two)

CUA 2315 Buffet Cookery or
CUA 2575 International Cookery or
CUA 2595 Culinary Soft Skills*

*Division Chair approval only

GENERAL EDUCATION REQUIREMENTS: 18 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT HOURS)

ENGL 1113 Freshman Composition I and
ENGL 1213 Freshman Composition II or
SPCH 1113 Introduction to Speech Communications or
ENGL 1033 Technical Writing I and
ENGL 2033 Technical Writing II or
SPCH 1113 Introduction to Speech Communications or
SPCH 2313 Small Group Communications

HISTORY (3 CREDIT HOURS)

HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865

MATHEMATICS (3 CREDIT HOURS)

MATH 1513 College Algebra or
MATH 2003 Business Mathematics

PHILOSOPHY (3 CREDIT HOURS)

PHIL 1213 Ethics

POLITICAL SCIENCE (3 CREDIT HOURS)

POLS 1113 U.S. Government

INTERDEPARTMENTAL REQUIREMENTS: 4 CREDIT HOURS

GENERAL TECHNOLOGIES (4 CREDIT HOURS)

GTGE 1111 College Cornerstone or
ORIE 1011 College Strategies
CS 1013 Computer Literacy & Applications

DEPARTMENTAL APPROVED ELECTIVES (6 CREDIT HOURS)

From Culinary Arts, Health, Social Science, Philosophy, Business, or other approved elective.
Engineering Technologies – Civil Engineering/Surveying Technology

Associate in Applied Science (75 credit hours)

Civil Engineering Technologists are the backbone of their industry. Construction, manufacturing, petrochemical and many other industries depend on engineering technologists to oversee construction of their facilities and infrastructures. The specific academic areas included in the Civil/Survey Technology Option include design/drafting, surveying and civil engineering technology. Courses in these areas are taught by faculty with years of industry experience and solid academic credentials. Technologists are charged with implementing the design strategies of engineers and therefore must learn the application portion of the engineering discipline. OSUIT students learn to apply engineering technology in state-of-the-art laboratories using the latest equipment.

Students completing the Civil/Surveying Technology specialty have the option of articulating into the Bachelor of Technology in Civil Engineering Technology degree. A specific sequence of courses is required to insure seamless transition from the AAS to BT degree. Graduates from other associate degrees may be required to take bridge courses prior to entering the bachelor degree program.

Students must complete all technical courses with a “C” or better and maintain a 2.50 overall GPA.

Admissions requirements for the Engineering Technologies - Civil Engineering/Surveying Technology AAS degree may be found on page 70.

TECHNICAL COURSE REQUIREMENTS: 16 CREDIT HOURS
- ETDG 1143 Intro to Design/Drafting
- ETDG 1192 Applied AutoCAD
- ETDG 2663 Civil Applications
- ETDG 2203 Intro to GIS
- CET 2805 Internship

SURVEY EMPHASIS REQUIREMENTS: 10 CREDIT HOURS
- SURV 1011 Intro to Surveying
- SURV 2303 Surveying I
- SURV 1223 Land Law I
- SURV 2223 Land Law II

CIVIL EMPHASIS REQUIREMENTS: 9 CREDIT HOURS
- CET 2123 Properties of Soils
- CET 2213 Transportation I
- CET 2323 Statics

GENERAL EDUCATION REQUIREMENTS: 39 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT HOURS)
- ENGL 1113 Freshman Composition I
- ENGL 1213 Freshman Composition II

MATHEMATICS (13 CREDIT HOURS)
- MATH 1513 College Algebra
- MATH 1613 Trigonometry
- MATH 2144 Calculus I
- MATH 2153 Calculus II

PHILOSOPHY (3 CREDIT HOURS)
- PHIL 1213 Ethics

SOCIAL SCIENCE (6 CREDIT HOURS)
- HIST 1483 U.S. History to 1865
- HIST 1493 U.S. History Since 1865
- POLS 1113 U.S. Government

ORAL COMMUNICATIONS (3 CREDIT HOURS)
- SPCH 1113 Intro to Speech Communications
- SPCH 2313 Small Group Communications

SCIENCE (8 CREDIT HOURS)
- PHYS 1114 General Physics I
- CHEM 1314 Chemistry I

INTERDEPARTMENTAL REQUIREMENTS: 1 CREDIT HOUR
- ORIE 1011 College Strategies
Engineering Technologies – Civil Engineering Technology

Bachelor of Technology (126 credit hours)

The Bachelor of Technology degree in Civil Engineering Technology teaches students problem solving and technical skills in an application-focused, team-based environment using real world projects. The degree plan prepares graduates for high performance jobs using technologically advanced civil engineering design tools. Graduates from the program will be highly effective engineering technologists with experience in both the theoretical and the application of theory to the solution of civil engineering problems.

Individuals interested in Civil Engineering Technology can expect the career opportunities to remain stable. Additionally, due to the growing number of retiring engineers, the number of position vacancies will be greater than the number of qualified baccalaureate degree graduates.

This technology-intensive, application-focused baccalaureate degree is offered through OSU Institute of Technology's Engineering Technologies Division, which has a tradition for excellence in preparing individuals for exciting and successful careers. Working closely with industry leaders to incorporate the latest business practices and emerging technologies into the program, OSU Institute of Technology's experienced, expert instructors provide students one-on-one attention, hands-on technical skills, and general education classes so graduates are positioned to quickly move to the top of their fields. Engineering Technologies utilizes an innovative approach to education that prepares high-performance workers for world-class businesses and industries.

The surveying option within the CET degree teaches students advanced problem solving and technical skills as well, but in a constantly changing environment that ranges from indoor office work to outdoor field work while using the latest technology in surveying tools, including GPS, GIS, and total stations. The program prepares students to utilize this technology in a variety of surveying tasks which include property line location, topographic surveys, and construction applications.

For more information or to schedule a tour of our campus and division contact our office at 918-293-5150.

Students must complete all technical courses with a “C” or better and maintain a 2.50 overall GPA.

Admissions requirements for the Engineering Technologies BT degree may be found on page 72.

DEPARTMENTAL REQUIREMENTS: 78 CREDIT HOURS

TECHNICAL CORE REQUIREMENTS: 78 CREDIT HOURS

CET 2103 Construction Mgmt & Economics
CET 2123 Properties of Soils
CET 2323 Statics
CET 3114 Strengths of Materials & Structural Analysis
CET 3123 Dynamics/Thermodynamics
CET 3143 Transportation
CET 3213 Steel Structures
CET 3313 Fluid Mechanics/Hydraulics
CET 3543 F.E. Exam Review
CET 4213 Reinforced Concrete Design
CET 4224 Hydrology
CET 4233 Water/Waste Water
CET 4812 BT Internship
CET 3103 Elements of Electricity
ETDG 4413 Capstone
ETDG 1143 Introduction to Design/Drafting
ETDG 1192 Applied AutoCAD
ETDG 2203 Introduction to GIS
ETDG 2663 Civil Technology Applications
SURV 1011 Introduction to Surveying
SURV 1223 Land Law I
SURV 2223 Land Law II
SURV 2303 Surveying I

GENERAL EDUCATION REQUIREMENTS: 48 CREDIT HOURS

ORAL COMMUNICATIONS (6 CREDIT HOURS)
ENGL 3323 Technical Writing III
SPCH 1113 Intro to Speech Communications or
SPCH 2313 Small Group Communications

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1113 Freshman Composition I
ENGL 1213 Freshman Composition II

MATHEMATICS (13 CREDIT HOURS)
MATH 1613 College Algebra
MATH 2144 Calculus I
MATH 2153 Calculus II

HISTORY (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865 OR
HIST 1493 U.S. History Since 1865

HUMANITIES (3 CREDIT HOURS)
Humanities Elective – 3 Credit Hours

PHILOSOPHY (3 CREDIT HOURS)
PHIL 1213 Ethics

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

SCIENCE (8 CREDIT HOURS)
CHEM 1314 General Chemistry I
PHYS 1114 General Physics I

SOCIAL SCIENCE (3 CREDIT HOURS)
Social Science Elective – 3 hours

INTERDEPARTMENTAL REQUIREMENTS: 1 CREDIT HOUR
ORIE 1011 College Strategies

63
Engineering Technologies – Electrical/Electronics Specialization

Associate in Applied Science (75 credit hours)

Two concentrations are available under this specialization:
- Electrical/Electronics
- Automation and Control

Student should select one concentration based on career objectives.

Degree requirements for each concentration are found on the following page.

For more information or to schedule a tour of our campus and division, contact our office at 918-293-5150.

Students must complete all technical courses with a “C” or better and maintain a 2.50 overall GPA. Admissions requirements for the Engineering Technologies AAS degree may be found on page 70.

Electrical/Electronics Concentration

Graduates that enter the Oil and Gas industries may work in production and/or transportation areas, where they maintain, calibrate and install equipment and instrumentation related to finding and getting oil and gas out of the field and to the refineries and processing facilities. Additionally, there are a wide range of companies providing equipment and technology for field operations that demand high performance technicians. Graduates that find careers in the refining and processing of oil and gas will do similar activities such as calibrating, trouble shooting, and installing instrumentation and control systems.

The power generation sector uses graduates from this program to monitor and maintain the highly complex systems that supply the electrical power that supports our technologically intensive lifestyles. Graduates have employment opportunities in all areas of power generation, including power plants that are powered using coal, natural gas and nuclear energy as well as hydro-electric plants.

The program integrates engineering technology competency areas and employability skills. Instead of lecturing, faculty members facilitate learning using a hands-on approach where students learn by doing. Students work as individuals and in teams in realistic laboratory environments to solve challenging “real world” problems. Students experience a multi-disciplinary program that allows them to become a highly productive team member in industry, often bridging the gap between the engineer and the layperson that is charged with implementing the design.

Through real world projects and the use of state of the art equipment, students explore the design, implementation and diagnosis of industrial and process automation and instrumentation. Industry support of the program allows for current industry standard equipment in the classroom, which allows graduates to enter the workplace prepared to be successful.

Automation & Control Concentration

The program teaches students problem solving and technical skills in an application focused, team based environment using industry approved curriculum and laboratories. Although the program was specifically developed as a seamless path to the Instrumentation Technology-Bachelor of Technology degree, graduates of the program can find entry level employment in industries such as food processing, oil and gas, chemical processing, and manufacturing.

These industries require technologists that possess knowledge of automation and control as they strive to maintain their production facilities and processes in a productive and efficient manner. Automation Control Technologists install, operate, repair, and maintain the equipment and processes that industry uses to produce products. These technologists are called upon to work on a variety of systems including measurement instruments, programmable controls, hydraulic systems, pneumatic systems, robotics, and similar technology.

The International Society of Automation notes positions in automation and control offer above average pay and benefits because of the level of skill and responsibility involved.

Working closely with industry leaders to incorporate the latest business practices and emerging technologies into the program, OSUIT’s experienced instructors provide students one-on-one attention, theory, hands-on technical skills, and general education classes so graduates are positioned to quickly move to the top of their field.
Electrical/ Electronic Concentration

Associate in Applied Science (75 Credit Hours)

TECHNICAL COURSE REQUIREMENTS: 44 CREDIT HOURS
ELECTRICAL / ELECTRONICS (44 CREDIT HOURS)
ETDE 1243 DC Electronics & Metrology
ETDE 1263 AC Electronic & Photonics
ETD 1102 Basic Mechanics
ETDE 1343 Electrical Motors & Controls
ETDE 1363 Electronic Devices & Standards
ETDE 1373 Digital Systems & Microcontrollers
ETDE 2113 Introduction to PLCs
ETDE 2223 Electrical Power Distribution
ETDE 2253 Hydraulics & Pneumatics
ETDG 1143 Introduction to Design/Drafting
ETDE 2273 Electronic Control Devices
ETDE 2812 Internship (12 credit hours)

GENERAL EDUCATION REQUIREMENTS: 21 CREDIT HOURS
COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1113 Freshman Composition I
ENGL 1213 Freshman Composition II
MATHEMATICS (6 CREDIT HOURS)
MATH 1513 College Algebra
MATH 1613 Trigonometry
PHILOSOPHY (3 CREDIT HOURS)
PHIL 1213 Ethics
SOCIAL SCIENCE (6 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865
POLS 1113 U.S. Government
ADDITIONAL PROGRAM REQUIREMENTS: 7 CREDIT HOURS

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 2313 Small Group Communications

SCIENCE (4 CREDIT HOURS)
PHYS 1114 General Physics I

Automation and Control Concentration

Associate in Applied Science (75 Credit Hours)

TECHNICAL COURSE REQUIREMENTS: 35 CREDIT HOURS
ELECTRICAL / ELECTRONICS (35 CREDIT HOURS)
ETDE 1243 DC Electronics & Metrology
ETDE 1263 AC Electronic & Photonics
ETD 1102 Basic Mechanics
ETDE 1343 Electrical Motors & Controls
ETDE 1363 Electronic Devices & Standards
ETDE 1373 Digital Systems & Microcontrollers
ETDE 2113 Introduction to PLCs
ETDE 2223 Electrical Power Distribution
ETDE 2253 Hydraulics & Pneumatics
ETDG 1143 Introduction to Design/Drafting
ETDE 2273 Electronic Control Devices
ETDE 2123 PLC Applications

GENERAL EDUCATION REQUIREMENTS: 28 CREDIT HOURS
COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1113 Freshman Composition I
ENGL 1213 Freshman Composition II
MATHEMATICS (13 CREDIT HOURS)
MATH 1513 College Algebra
MATH 1613 Trigonometry
MATH 2144 Calculus I
MATH 2153 Calculus II
PHILOSOPHY (3 CREDIT HOURS)
PHIL 1213 Ethics
SOCIAL SCIENCE (6 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865
POLS 1113 U.S. Government
ADDITIONAL PROGRAM REQUIREMENTS: 1 CREDIT HOUR

COURSE SUBSTITUTION OPTIONS

The following courses are offered at OSUIT’s learning site in the Mid-America Industrial Park located in Pryor, Oklahoma and can be used as substitution courses for either concentration with Division Chair approval.
ETDE 2090 Special Projects
ETDE 1333 Industrial Electrical Systems
ETDE 2102 Maintenance Theory & Application
ETDE 2112 Mechanical Systems & Equipment
ETDE 2173 Introduction to DCS Systems
ETDE 2343 Motors and Controls II
ETDM 1153 Introduction to Manufacturing
Engineering Technologies –
Engineering Graphics &
Design/Drafting
Specialization

Associate in Applied Science
(75 credit hours)

21st century employees must work together
to master new technologies and continually
make their organizations more effective and
more profitable. They must acquire and
process essential information, analyze and
troubleshoot systems, think creatively and
critically, and communicate and work well
with others across the organization. The
ability to learn and change is critical.

Nearly all high-performance employers
report a significant shortage of skilled
workers to fill these critical jobs in their
organizations and the shortage of skilled
workers will continue to grow for many
years. Recent studies indicate that the need
for highly skilled technicians will be greater
than the number of qualified workers. This
presents very good career opportunities for
graduates from the Engineering Graphics
and Design/Drafting specialty. Graduates
from this program are prepared to enter
careers in the Architectural, Mechanical or
Civil Design/Drafting fields. The program is
designed such that students can complete
the core course work for at least two of the
specializations. The career opportunities in
each of these areas are strong and are
projected to continue seeing strong growth
and demand.

The construction industry continues to be a
strong part of Oklahoma’s economy. As
such, industry needs Design/Drafters that
are able to provide high quality drawings
and documentation in an efficient manner.
While graduates from this program are not
architects or engineers, they will work side
by side with them converting their concepts
and calculations into documents that will be
used in the field to bring those ideas to
reality.

Utilizing industry standard software
(AutoCAD, SolidWorks, etc.) students
experience a realistic multi-disciplinary
learning environment that involves the
managing the design process, construction and
surveying techniques.

The need for design/drafters that
understand how to make the design less
complex and more profitable is very strong.

The program integrates engineering
technology competency areas and
employability skills. Instead of lecturing,
faculty members facilitate learning using a
contextual approach where students learn
by doing. Students work as individuals and
in teams in realistic laboratory
environments, to solve challenging “real
world” problems. Students experience a
multi-disciplinary program that allows them
to become a highly productive team
member in industry; often bridging the gap
between the engineer and the layperson
that is charged with implementing the
design. Students can expect to become
more than just experts in CAD software.

Students must complete all technical
courses with a “C” or better and
maintain a 2.50 overall GPA. Admissions
requirements for the Engineering
Technologies AAS degree may be found
on page 71.

TECHNICAL COURSE
REQUIREMENTS: 48 CREDIT HOURS

ENGINEERING GRAPHICS TECHNOLOGY
(48 CREDIT HOURS)
ETDG 1143 Introduction to Design/Drafting
ETDG 1192 Applied AutoCAD
ETDG 1253 Technical Drawing
ETDG 1523 Architectural Design
ETDG 2143 Architectural Modeling
ETDG 2223 Pipe Drafting
ETDG 2293 Mechanical Design
ETDG 2423 SolidWorks
ETDG 2523 Design Drafting Capstone
ETDG 2623 Building Structures
ETDG 2674 Civil Drafting
ETDG 2812 Design Drafting Internship
CET 2323 Statics

GENERAL EDUCATION
REQUIREMENTS: 15 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT
HOURS)
ENGL 1113 Freshman Composition I
ENGL 1213 Freshman Composition II

MATHEMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra

SOCIAL SCIENCE (6 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History since 1865 and
POLS 1113 U.S. Government

ADDITIONAL PROGRAM
REQUIREMENTS: 10 CREDIT HOURS

ORAL COMMUNICATIONS (3 CREDIT
HOURS)
SPCH 2313 Small Group Communications

MATHEMATICS (3 CREDIT HOURS)
MATH 1613 Trigonometry

SCIENCE (4 CREDIT HOURS)
PHYS 1114 General Physics I

INTERDEPARTMENTAL
REQUIREMENTS: 2 CREDIT HOUR
Orie 1011 College Strategies
ETD 2411 Employment Exploration
Engineering Technologies – Instrumentation
Engineering Technology

Bachelor of Technology
(128 credit hours)

This program teaches students problem solving and technical skills in an application-focused, team-based environment using industry approved realistic laboratories. Program graduates are prepared for high performance jobs in the areas of instrumentation, control systems, process automation, and measurement. On the job, graduates will design, install, operate, maintain, and repair instrumentation and control systems in the areas of chemical processing, food processing, oil and gas production, manufacturing, energy production and other highly technical fields. Industry needs professionals competent in high-tech automation solutions to increase the consistency, quantity and quality of goods produced in Oklahoma to compete in global markets. The Bureau of Labor Statistics predicts the job market for instrumentation technologists will continue to grow.

The International Society of Automation notes positions in automation and control offer above-average pay and benefits because of the level of skill and responsibility involved. Because of their broad understanding of production processes, business acumen and problem solving skills, Bachelor of Technology graduates have excellent opportunities for advancement into management positions as companies continue to install and upgrade high-tech production systems. To meet stringent environmental requirements, companies are adding highly sophisticated instrumentation and control systems to extend the life of existing oil and gas refineries, food and chemical processing plants, and power generation facilities.

Working closely with industry leaders to incorporate the latest business practices and emerging technologies into the program,

OSU Institute of Technology’s experienced instructors provide students one-on-one attention, theory, hands-on technical skills, and general education classes so graduates are positioned to quickly move to the top of their fields.

For more information or to schedule a tour of our campus and division contact our office at 918-293-5150.

Students must complete all technical courses with a “C” or better and maintain a 2.50 overall GPA. Admissions requirements for the Engineering Technologies BT degree may be found on page 72.

TECHNICAL COURSE REQUIREMENTS: 74 CREDIT HOURS

INSTRUMENTATION ENGINEERING REQUIREMENTS: 74 CREDIT HOURS
ETD 1102 Basic Mechanics
ETDE 1243 DC Electronics & Metrology
ETDE 1263 AC Electronic & Photonics
ETDE 1343 Electrical Motors & Controls
ETDE 1363 Electronic Devices & Standards
ETDE 1373 Digital Systems & Microcontrollers
ETDE 2113 Introduction to PLCs
ETDE 3123 Instrumentation
ETDE 2123 PLC Applications
ETDE 2223 Electrical Power Distribution
ETDE 2253 Hydraulics & Pneumatics
ETDE 2273 Electronic Control Devices
ETDE 3133 Process Measurement & Control
ETDE 3213 Project Mgmt and Engineering Econ
ETDE 3223 Industrial Networks
ETDE 3313 Heat Transfer and Fluid Mechanics
ETDE 3513 Programming for Instrumentation
ETDE 3112 Internship
ETDE 4233 Liquid & Gas Flow Measurement
ETDE 4313 Distributed Control Systems
ETDE 4813 Capstone
ETDG 1143 Introduction to Design/Drafting

GENERAL EDUCATION REQUIREMENTS: 29 CREDIT HOURS
COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1113 Freshman Composition I
ENGL 1213 Freshman Composition II

MATHEMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra

HUMANITIES (6 CREDIT HOURS)
PHIL 1213 Ethics
HUM 1013 Humanities I

SOCIAL SCIENCE (6 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History since 1865 and
POLS 1113 U.S. Government

SCIENCE (8 CREDIT HOURS)
CHEM 1314 General Chemistry I
PHYS 1114 General Physics I

ADDITIONAL PROGRAM REQUIREMENTS: 23 CREDIT HOURS

ORAL COMMUNICATIONS (6 CREDIT HOURS)
ENGL 3323 Technical Writing III
SPCH 2313 Small Group Communication

MATHEMATICS (10 CREDIT HOURS)
MATH 1613 Trigonometry
MATH 2144 Calculus I
MATH 2153 Calculus II

SCIENCE (4 CREDIT HOURS)
PHYS 1214 General Physics II

SOCIAL SCIENCE (3 CREDIT HOURS)
PSYC 1113 Introductory Psychology

INTERDEPARTMENTAL REQUIREMENTS: 2 CREDIT HOUR
ORIE 1011 College Strategies
ETD 2411 Employment Exploration
Engineering Technologies – Manufacturing Technology Specialization

Associate in Applied Science (75 credit hours)

21st century employees must work together to master new technologies and continually make their organizations more effective and more profitable. They must acquire and process essential information, analyze and troubleshoot systems, think creatively and critically, and communicate and work well with others across the organization. The ability to learn and change is critical.

Nearly all high-performance employers report a significant shortage of skilled workers to fill these critical jobs in their organizations and the shortage of skilled workers will continue to grow for many years. Department of Labor data indicates that the shortage of skilled workers will exceed 10 million by the year 2020. Because of the changing nature of work and jobs, manufacturing technicians will need a higher level of education than previously required.

There is a common misconception that manufacturing jobs are not important and the US economy is less dependent on these jobs than before. However, the manufacturing sector currently contributes to over 25% of the gross domestic product. It was the largest contributor to economic growth in the 1990’s. The average wages are 18% higher than the average of all other sectors. Additionally, 84% of manufacturing workers receive direct health benefits. This sector will continue to be a vital part of the US economy. Careers in this field will support a family and a good quality of life.

Graduates from the program are prepared to be more than just machine operators and programmers. The program teaches problem solving and process improvement skills. These skills are highly desired by industry. Students experience the complete manufacturing cycle of design, prototype, production and verification. This experience prepares graduates for a variety of career paths in the manufacturing sector. Additionally the program integrates the technology competencies with employability skills. In addition to lecturing, faculty members facilitate learning using a contextual approach. Students work as individuals and in teams in realistic laboratory environments, to solve challenging “real world” problems. Students learn in a $1.3 million state of the art manufacturing lab. The equipment and software in these labs are identical to what graduates may use in their careers. This contextual approach allows students to become highly productive team members in industry. Graduates often bridge the gap between the engineer and the layperson that is charged with implementing the design.

Students must complete all technical courses with a “C” or better and maintain a 2.50 overall GPA. Admissions requirements for the Engineering Technologies AAS degree may be found on page 71.

TECHNICAL COURSE REQUIREMENTS: 46 CREDIT HOURS

MANUFACTURING TECHNOLOGY (46 CREDIT HOURS)
ETD 1101 Safety Applications
ETDG 1143 Introduction to Design/Drafting
ETDG 2423 SolidWorks
ETDM 1153 Introduction to Manufacturing
ETDM 1333 CNC Manufacturing Processes & Fixtures
ETDM 1343 CNC Machine Programming
ETDM 1353 CNC Machine Operation
ETDM 1413 Conventional Manufacturing Processes & Tooling
ETDM 2203 Automated Mfg Techniques
ETDM 2123 Applied Manufacturing Processes
ETDM 2423 Quality Systems & Practices
ETDM 2463 CAM Applications
ETDM 2112 Manufacturing internship

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1113 Freshman Composition I
ENGL 1213 Freshman Composition II

MATHEMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra

PHILOSOPHY (3 CREDIT HOURS)
PHIL 1213 Ethics

SOCIAL SCIENCE (6 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or HIST 1493 U.S. History since 1865 and POLS 1113 U.S. Government

ADDITIONAL PROGRAM REQUIREMENTS: 10 CREDIT HOURS

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 1113 Intro to Speech Communications or SPCH 2313 Small Group Communications

MATHEMATICS (3 CREDIT HOURS)
MATH 1613 Trigonometry

SCIENCE (4 CREDIT HOURS)
PHYS 1114 General Physics I

INTERNATIONAL REQUIREMENTS: 1 CREDIT HOUR
ORIE 1011 College Strategies
Coming Fall 2013!

Engineering Technologies – Pipeline Integrity Technology

Associate in Applied Science (75 credit hours)

The world is dependent on oil and gas for a majority of its energy source. The movement of these products in an efficient manner is critical to the global economy. Using over two million miles of pipeline and associated equipment to transport hydrocarbon products, the pipeline industry is a large sector of the energy business. To place some perspective, imagine transporting one million barrels of oil per day at 100 dollars per barrel representing 36.5 billion dollars of product per year.

The large majority of the world’s pipeline infrastructure is approaching 40 years of age. These pipelines will be called upon to continue to operate for many more decades as demand increases and new sources of these products are discovered. It is imperative that the integrity and security of these aging structures be well maintained and managed.

The need for skilled engineering technologists that install, operate, maintain, repair, and manage the integrity and security of pipelines is on the increase as a large portion of the current workforce in this arena approaches retirement age.

The Pipeline Integrity Technology Program enables students to develop the skills and knowledge required to be successful in the pipeline industry. Major topics include assessing pipeline damage and risk, corrosion control, regulations, safety, design, and integrity management.

The program integrates engineering technology competency areas and employability skills. Instead of lecturing, faculty members facilitate learning using a hands-on approach where students learn by doing. Students work individually as well as in teams using realistic laboratory environments, to solve challenging “real world” problems. Students experience a multi-disciplinary program that allows them to become a highly productive team member in industry, often bridging the gap between the engineer and the layperson that is charged with implementing the design.

TECHNICAL COURSE REQUIREMENTS: 50 CREDIT HOURS

PIPELINE INTEGRITY TECHNOLOGY (50 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CET 2103</td>
<td>Project Management</td>
</tr>
<tr>
<td>CNS 1213</td>
<td>Construction Safety</td>
</tr>
<tr>
<td>ETDE 1133</td>
<td>Introduction to Electrical/Electronics</td>
</tr>
<tr>
<td>PIT 1113</td>
<td>Introduction to Pipelines and Facilities</td>
</tr>
<tr>
<td>PIT 1123</td>
<td>Pipeline Materials and Components</td>
</tr>
<tr>
<td>PIT 1213</td>
<td>Processing and Product Handling</td>
</tr>
<tr>
<td>PIT 1223</td>
<td>Introduction to Corrosion Controls</td>
</tr>
<tr>
<td>PIT 2112</td>
<td>Internship</td>
</tr>
<tr>
<td>PIT 2113</td>
<td>Regulations and Compliance</td>
</tr>
<tr>
<td>PIT 2123</td>
<td>Integrity Management Concepts I</td>
</tr>
<tr>
<td>PIT 2213</td>
<td>Pipeline Maintenance & Repair</td>
</tr>
<tr>
<td>PIT 2223</td>
<td>Integrity Management Concepts II</td>
</tr>
<tr>
<td>PIT 2232</td>
<td>NACE CP1 Prep</td>
</tr>
<tr>
<td>PIT 2243</td>
<td>Capstone</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION REQUIREMENTS: 18 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT HOURS)

ENGL 1113 Freshman Composition I or ENGL 1033 Technical Writing I and ENGL 1213 Freshman Composition II or ENGL 2033 Technical Writing II

MATH 1513 College Algebra

PHILOSOPHY (3 CREDIT HOURS)

PHIL 1213 Ethics

SOCIAL SCIENCE (6 CREDIT HOURS)

HIST 1483 U.S. History to 1865 or HIST 1493 U.S. History since 1865 and POLS 1113 U.S. Government

ADDITIONAL PROGRAM REQUIREMENTS: 3 CREDIT HOURS

ORAL COMMUNICATIONS (3 CREDIT HOURS)

SPCH 2313 Small Group Communications

INTERDEPARTMENTAL REQUIREMENTS: 4 CREDIT HOUR

CS 1013 Computer Literacy & Applications

GTGE 1111 College Cornerstone
Engineering Technologies – Power Plant Technology

Associate in Applied Science (90 credit hours)

Electricity plays a vital role in modern American life, and the demand for this valuable resource continues to grow throughout Oklahoma and the United States. In recent years, power generation organizations have become dependent on increasingly complex information technologies, confront new governmental regulations, and, like many workforce sectors, face retirements among large numbers of their current workers. Not surprisingly, each of these changes has significantly impacted the availability of a sufficient number of well-prepared power production technical professionals.

An article in the October 30, 2006 issue of the *Washington Post* says “...but industry officials estimate that about half of the approximate 400,000 employees in the workforce will be eligible for retirement over the next five to 10 years.”

Graduates of OSU Institute of Technology’s Power Plant Technology program will become the workforce of the future operating, maintaining and expanding the power generation capacity of this state and country.

Students must complete all technical courses with a “C” or better and maintain a 2.50 overall GPA. Admissions requirements for the Engineering Technologies AAS degree may be found on page 70.

Technical Course Requirements: 48 Credit Hours

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETDE 1133</td>
<td>Introduction to Electrical/Electronics</td>
</tr>
<tr>
<td>ETDP 1113</td>
<td>Introduction to Power Plants</td>
</tr>
<tr>
<td>ETDP 1343</td>
<td>Electrical Motors and Controls</td>
</tr>
<tr>
<td>ETDP 2112</td>
<td>Piping & Instrument Diagrams</td>
</tr>
<tr>
<td>ETDP 2123</td>
<td>Boilers</td>
</tr>
<tr>
<td>ETDP 2133</td>
<td>Mechanical Systems</td>
</tr>
<tr>
<td>ETDP 2143</td>
<td>Compliance Regulations</td>
</tr>
<tr>
<td>ETDP 2153</td>
<td>Combustion Systems and processes</td>
</tr>
<tr>
<td>ETDP 2173</td>
<td>Water Systems and Processes</td>
</tr>
<tr>
<td>ETDP 2216</td>
<td>Capstone</td>
</tr>
<tr>
<td>ETDP 2223</td>
<td>Prime Movers</td>
</tr>
<tr>
<td>ETDP 2313</td>
<td>Thermal Efficiency</td>
</tr>
<tr>
<td>ETDP 2612</td>
<td>Internship</td>
</tr>
</tbody>
</table>

General Education Requirements: 32 Credit Hours

Communication Arts (6 Credit Hours)
- ENGL 1033 Tech Writing I
- ENGL 2033 Tech Writing II

Mathematics (6 Credit Hours)
- MATH 1513 College Algebra
- MATH 1613 Trigonometry

Philosophy (3 Credit Hours)
- PHIL 1213 Ethics

Physical Science (4 Credit Hours)
- PHYS 1114 General Physics I

Chemistry (4 Credit Hours)
- CHEM 1314 General Chemistry I

Management (3 Credit Hours)
- MGMT 2313 Principles of Management

Social Science (6 Credit Hours)
- HIST 1483 U.S. History to 1865 or
- HIST 1493 U.S. History Since 1865 and
- POLS 1113 U.S. Government

Additional Program Requirements: 9 Credit Hours

Computer Literacy (3 Credit Hours)
- GTIT 1133 Computer Literacy and Applications

Electrical/Electronics Technology (3 Credit Hours)
- ETDE 2253 Hydraulics and Pneumatics

Interdepartmental Requirements: 1 Credit Hour

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTGE 1111</td>
<td>College Cornerstone</td>
</tr>
<tr>
<td>ORIE 1011</td>
<td>College Strategies</td>
</tr>
<tr>
<td>ETD 2411</td>
<td>Employment Exploration</td>
</tr>
</tbody>
</table>
Admission Requirements and Process for ENGINEERING TECHNOLOGIES
Associate in Applied Science Degree

The goal of OSU Institute of Technology is to provide students the opportunity to succeed and to ensure each is prepared academically at each step in their education. The Engineering Technologies Division programs of study are academically rigorous; however student success can be maximized with proper advisement and remediation when appropriate. The faculty of the division makes every effort to ensure each student is equipped with the necessary pre-requisite academic and technical skills to enter the program and to move to the next sequence of courses. To best accomplish this mission, while OSU Institute of Technology is an open-door institution, to be admitted to the Engineering Technologies Division to pursue an Associate in Applied Science in Engineering Technologies degree, the following steps are to be completed by the student:

1. Complete the OSU Institute of Technology admission process (i.e., application for admission, housing).

2. Demonstrate appropriate academic preparedness level by one of the following methods:
 a. Complete 24 College Credit hours prior to admission to OSU Institute of Technology or successfully remediate at another institution of higher education (Note: Cooperative or Alliance Agreement credit hours do not apply to the 24 hour rule), or
 b. Score 19 or better on all ACT subscores, or
 c. Achieve the following minimum scores on the COMPASS exam (administered by OSU Institute of Technology or approved off-campus site):
 - Reading Comprehension – 81
 - Writing Skills – 74
 - Pre-Algebra – 46
 - Algebra – 68 or College Algebra – 45
 - Combined Reading and College Algebra – 123, or Reading and Algebra – 149 AND not deficient in either category (determines science score), and
 d. Demonstrate an appropriate level of computer literacy or
 i. achieve an 80% on the OPAC assessment available in the OSU Institute of Technology Assessment Center. (A list of competencies is available in the Engineering Technologies Division office or the Assessment Center) or
 ii. have documented certifications of competencies in basic Microsoft Windows and Office, or
 iii. have successfully completed a computer literacy type course that is documented on a verifiable transcript (either High School or College).

Students that do not have the appropriate ACT or COMPASS scores may be provisionally admitted to the division pending successful completion of fundamental coursework and must meet with a divisional advisor to determine an enrollment plan. Students that do not meet the entry level computer literacy requirements are required to take Computer Literacy and Applications, CS 1013.

Students that meet the entrance requirements are expected to meet with an academic advisor prior to enrolling. Due to the math and science rigor associated with the Engineering Technologies programs, students that are admitted to the division under provision 2.a are required to meet with the academic advisors of the Engineering Technologies Division. During this advisement session, issues such as intervening time span between the last college math/science class and previous academic program of study can be evaluated to determine the most advantageous plan of study for the student.

For more information or to schedule a tour of our campus and division contact our office at 918-293-5150.
Admission Requirements and Process for ENGINEERING TECHNOLOGIES Bachelor of Technology Degree

The goal of OSU Institute of Technology is to provide students the opportunity to succeed and to ensure each one is prepared academically at each step in their education. While OSU Institute of Technology is an open-door institution, to be admitted to the Engineering Technologies Division to pursue a Bachelor of Technology, the prospective student must:

1. Hold an Associate degree or higher that meets one of the following criteria:
 a. Graduates with the AAS in Engineering Technologies from OSU Institute of Technology have the option of articulating into the Bachelor of Technology degree. A specific sequence of courses is required to insure seamless transition from the AAS to BT degree, OR
 b. Graduates from other associate degrees may be required to take bridge courses prior to entering the bachelor degree program.

2. Complete the OSU Institute of Technology admission process (i.e. application for general admission and admission to the BT program, housing).

Students that meet the entrance requirements are expected to meet with an academic advisor prior to enrolling. Due to the math and science rigor associated with the Engineering Technologies programs, students that are admitted to the division under provision 1.b are required to meet with the academic advisors of the Engineering Technologies Division. During this advisement session, issues such as intervening time span between the last college math/science class and previous academic program of study can be evaluated to determine the most advantageous plan of study for the student.
Diesel & Heavy Equipment Technology – Aggreko Technician Training Program

Associate in Applied Science (88 credit hours)

Aggreko has the world's largest fleet of rental generators, rental chillers, cooling towers, heaters, dehumidifiers and air handlers backed by the support of over 2,500 people in 29 countries from 118 locations. Aggreko generators range in size from 10 KW to 2 MW, and can be used for applications ranging from simple standalone power packages up to 100 MW power stations for grids. Aggreko supplies load banks and a complete range of accessories.

Industries which frequently use Aggreko solutions include: manufacturing, shipping and ship-building, utilities, events, entertainment and movies, petro-chemical, oil & gas exploration and mining, military, disaster relief and service industries, construction, and telecommunications.

Technical training on Aggreko serviced equipment and components include the latest developments in: Preventive and Predictive Maintenance; Diesel Engine Systems; Engine Electronic Systems; Power Generation Systems; York and Trane Chillers; Electric Motors and Motor Controls, Electrical Distribution, Synchronization and Load Sharing, and Diagnostic Procedures.

The two-year, six semester program incorporates approximately one-half of the time designated for technical / academic education. The remaining time is allocated for internships at Aggreko Service Centers. Each block of technical education and general education course work is followed by an internship experience that reinforces the technical education. Students can expect nearly 100% job placement, low faculty/student ratio, and paid internships.

DEPARTMENTAL REQUIREMENTS: 60 CREDIT HOURS

AGGREKO TECHNICIAN TRAINING PROGRAM (60 CREDIT HOURS)

DHEA 1113 Maintenance Fundamentals
DHEA 1123 Diesel Engine I – Diesel Fundamentals and Maintenance
DHEA 1133 Internship I
DHEA 1213 DC/AC Electrical Fundamentals
DHEA 1233 Internship II or
DHE 2033 Diesel Skills I*
DHEA 1313 Generator Systems I – Theory & Operation
DHEA 1323 Aggreko Basic Refrigeration
DHEA 1343 SEA Units and New Generation II Air Conditioners
DHEA 2412 Internship III
DHEA 2413 Aggreko Motor Starting and Motor Controls
DHEA 2423 Electrical Distribution
DHEA 2433 Internship IV or
DHE 2043 Diesel Skills II*
DHEA 2523 Diesel Engine II – Troubleshooting & Repair/Replacement
DHEA 2533 Internship V or
DHE 2053 Diesel Skills III*
DHEA 2543 Oil Free Air Compressors – Theory & Operation
DHEA 2613 Generator Systems II – Advanced Generator Controls
DHEA 2623 Aggreko Capstone

* Option available for career technology center students in approved cooperative alliance programs.

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

BEHAVIORAL SCIENCE (3 CREDIT HOURS)
PSYC 1113 Introductory Psychology or
PSYC 2313 Psychology of Personal Adjustment or
SOC 1113 Introductory Sociology

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1033 Technical Writing I and
ENGL 2033 Technical Writing II or
ENGL 1213 Freshman Comp II or
ENGL 1113 Freshman Comp I and
ENGL 2033 Technical Writing II

HISTORY (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865

GENERAL BUSINESS (3 CREDIT HOURS)
BADM 1113 Introduction to Business or
MGMT 2243 Small Business Management or
MGMT 2913 Leadership & Organizational Behavior
MGMT 2413 Supervisory Management

MATHMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra or
MATH 2003 Business Mathematics

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 1113 Introduction to Speech Communications or
SPCH 2313 Small Group Communications

INTERDEPARTMENTAL REQUIREMENTS: 4 CREDIT HOURS

GENERAL TECHNOLOGIES (4 CREDIT HOURS)
CS 1013 Computer Literacy and Applications
GTGE 1111 College Cornerstone

For more detailed information, please contact the Heavy Equipment & Vehicle Institute office at 918-293-4710.

ENGL 1113 Freshman Comp I and
ENGL 1213 Freshman Comp II or
ENGL 1113 Freshman Comp I and
ENGL 2033 Technical Writing II

HISTORY (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865

GENERAL BUSINESS (3 CREDIT HOURS)
BADM 1113 Introduction to Business or
MGMT 2243 Small Business Management or
MGMT 2913 Leadership & Organizational Behavior
MGMT 2413 Supervisory Management

MATHMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra or
MATH 2003 Business Mathematics

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 1113 Introduction to Speech Communications or
SPCH 2313 Small Group Communications

INTERDEPARTMENTAL REQUIREMENTS: 4 CREDIT HOURS

GENERAL TECHNOLOGIES (4 CREDIT HOURS)
CS 1013 Computer Literacy and Applications
GTGE 1111 College Cornerstone

* Option available for career technology center students in approved cooperative alliance programs.

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

BEHAVIORAL SCIENCE (3 CREDIT HOURS)
PSYC 1113 Introductory Psychology or
PSYC 2313 Psychology of Personal Adjustment or
SOC 1113 Introductory Sociology

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1033 Technical Writing I and
ENGL 2033 Technical Writing II or
ENGL 1213 Freshman Comp II or
ENGL 1113 Freshman Comp I and
ENGL 2033 Technical Writing II

HISTORY (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865

GENERAL BUSINESS (3 CREDIT HOURS)
BADM 1113 Introduction to Business or
MGMT 2243 Small Business Management or
MGMT 2913 Leadership & Organizational Behavior
MGMT 2413 Supervisory Management

MATHMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra or
MATH 2003 Business Mathematics

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 1113 Introduction to Speech Communications or
SPCH 2313 Small Group Communications

INTERDEPARTMENTAL REQUIREMENTS: 4 CREDIT HOURS

GENERAL TECHNOLOGIES (4 CREDIT HOURS)
CS 1013 Computer Literacy and Applications
GTGE 1111 College Cornerstone

* Option available for career technology center students in approved cooperative alliance programs.

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

BEHAVIORAL SCIENCE (3 CREDIT HOURS)
PSYC 1113 Introductory Psychology or
PSYC 2313 Psychology of Personal Adjustment or
SOC 1113 Introductory Sociology

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1033 Technical Writing I and
ENGL 2033 Technical Writing II or
Diesel & Heavy Equipment Technology – CAT Dealer Prep

Associate in Applied Science (87 credit hours)

CAT Dealer Prep is a Caterpillar dealer sponsored heavy equipment technician program. An important feature of the program is that each semester a student alternates seven and one-half weeks on campus and seven and one-half weeks at the dealership. This intensive method of study and practice prepares a high performance technician that the participating Caterpillar dealers demand. After six semesters of on-campus classes and paid internships, graduates typically stay with the dealership as a full time employee.

Technicians diagnose problems, disassemble and examine for defects and excessive wear, recondition or replace parts. They test and adjust components and systems to insure proper operation and to prevent failures. They use sophisticated diagnostic equipment. Personal computers are used for diagnostics, record keeping and communications within the shops, offices and with customers.

Individuals completing this program will find many opportunities with Caterpillar dealerships. Some of the areas within a dealership include, truck engines, industrial engines, heavy equipment, agricultural equipment and component specialist. A student can expect nearly 100% job placement rate, low faculty/student ratio and paid student internships.

PROGRAM ENTRY REQUIREMENTS:

1. Meet institutional requirements and
2. Obtain an approved dealer sponsor.

For more detailed information, please contact the Heavy Equipment & Vehicle Institute office at 918-293-4710.

DEPARTMENTAL REQUIREMENTS: 56 CREDIT HOURS

CAT DEALER PREP (56 CREDIT HOURS)
DHEC 1113 Internship I
DHEC 1124 Introduction to Caterpillar
DHEC 1134 CAT Electrical Fundamentals
DHEC 1213 CAT Hydraulic Fundamentals
DHEC 1223 CAT Fuel Systems
DHEC 1233 Internship II
DHEC 1313 Internship III or
DHE 2033 Diesel Skills I *
DHEC 1323 CAT Engine Fundamentals
DHEC 1333 CAT Machine Hydraulic Systems
DHEC 2413 CAT Engine Diagnostics and Repair
DHEC 2423 CAT Machine Electronic Systems
DHEC 2433 Internship IV or
DHE 2043 Diesel Skills II *
DHEC 2513 Internship V or
DHE 2053 Diesel Skills III *
DHEC 2524 CAT Power Train I
DHEC 2532 CAT Mobile Air Conditioning
DHEC 2603 CAT Power Train II
DHEC 2636 CAT Capstone

* Option available for career technology center students in approved cooperative alliance programs.

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

BEHAVIORAL SCIENCES (3 CREDIT HOURS)
PSYC 1113 Introductory Psychology or
PSYC 2313 Psychology of Personal Adjustment or
SOC 1113 Introductory Sociology

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1033 Technical Writing I and
ENGL 2033 Technical Writing II or
ENGL 1113 Freshman Composition I and
ENGL 1213 Freshman Composition II

HISTORY (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865

MATHEMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra or
MATH 2003 Business Mathematics

PHILOSOPHY (3 CREDIT HOURS)
PHIL 1213 Ethics

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 1113 Intro to Speech Communications or
SPCH 2313 Small Group Communications

INTERDEPARTMENTAL REQUIREMENTS: 7 CREDIT HOURS

GENERAL TECHNOLOGIES (7 CREDIT HOURS)
CS 1013 Computer Literacy & Applications
GTGE 1111 College Cornerstone
GTCT 1183 Welding
Diesel & Heavy Equipment Technology – Gas Processors Association/Gas Processors Suppliers Association, Natural Gas Compression

Associate in Applied Science (89 credit hours)

The two-year, six-semester program incorporates two semesters of mechanical systems training followed by a full semester paid internship. Students return the second year for two semesters of electrical, electronics and instrumentation training followed by another full summer semester paid internship. Each two-semester block of technical education and general education course work is followed by a full summer work experience time period, which reinforces the technical education. It is essential for the success of the program that the student’s education at OSU Institute of Technology and work experiences at GPA/GPSA member facilities be closely aligned for maximum student learning and retention.

Since considerable time is spent at the GPA/GPSA member facility, it is a requirement of the program that a student have a sponsoring GPA/GPSA member prior to the summer internship. Students who are not sponsored when they enter the program will participate in a career fair held prior to spring break to assist students in attaining a summer internship sponsor. The primary responsibility for the GPA/GPSA member is to provide training-related employment for the students during their learning/work experience, internship.

The internship allows students to apply, in a real world setting, what they have learned during the previous classroom/lab sessions. In addition, students become familiar with the GPA/GPSA member company environment, its organizational structure and the competencies that are expected of a professional service technician.

PROGRAM ENTRY REQUIREMENTS:
1. Meet institutional requirements and
2. Obtain an approved GPA/GPSA sponsor.

For more detailed information, please contact the Heavy Equipment & Vehicle Institute office at 918-293-4710.

DEPARTMENT REQUIREMENTS:
60 CREDIT HOURS

NATURAL GAS COMPRESSION (60 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHEG 1144</td>
<td>Gas Compressors</td>
</tr>
<tr>
<td>DHEG 1153</td>
<td>Fundamentals of Maintenance</td>
</tr>
<tr>
<td>DHEG 1213</td>
<td>Gas Compression Capstone I</td>
</tr>
<tr>
<td>DHEG 1243</td>
<td>Engine Principles</td>
</tr>
<tr>
<td>DHEG 1253</td>
<td>Advanced Engine Technology</td>
</tr>
<tr>
<td>DHEG 1312</td>
<td>Internship I or</td>
</tr>
<tr>
<td>DHEG 1363</td>
<td>CNG Codes & Regulations and</td>
</tr>
<tr>
<td>DHEG 1373</td>
<td>CNG Refueling Systems Oper and</td>
</tr>
<tr>
<td>DHEG 1306</td>
<td>Internship</td>
</tr>
<tr>
<td>DHEG 1313</td>
<td>Engine Air, Fuel and Starting Systems</td>
</tr>
<tr>
<td>DHEG 1232</td>
<td>DC/AC Circuit Analysis</td>
</tr>
<tr>
<td>DHEG 2413</td>
<td>Engine Electrical</td>
</tr>
<tr>
<td>DHEG 2423</td>
<td>Electrical Motors, Generators and Alternators</td>
</tr>
<tr>
<td>DHEG 2513</td>
<td>Electrical Devices and Controls</td>
</tr>
<tr>
<td>DHEG 2523</td>
<td>Programmable Logic Controllers (PLC)</td>
</tr>
<tr>
<td>DHEG 2609</td>
<td>Internship II or</td>
</tr>
<tr>
<td>DHE 2033</td>
<td>Diesel Skills I * and</td>
</tr>
<tr>
<td>DHE 2043</td>
<td>Diesel Skills II * and</td>
</tr>
<tr>
<td>DHE 2053</td>
<td>Diesel Skills III *</td>
</tr>
<tr>
<td>DHEG 2623</td>
<td>Instrumentation & Controls</td>
</tr>
<tr>
<td>DHEG 2633</td>
<td>Gas Compression Capstone II</td>
</tr>
</tbody>
</table>

* Option available for career technology center students in approved cooperative alliance programs.

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1033</td>
<td>Technical Writing I and</td>
</tr>
<tr>
<td>ENGL 2033</td>
<td>Technical Writing II or</td>
</tr>
<tr>
<td>ENGL 1113</td>
<td>Freshman Composition I and</td>
</tr>
<tr>
<td>ENGL 1213</td>
<td>Freshman Composition II</td>
</tr>
</tbody>
</table>

GENERAL BUSINESS (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BADM 1113</td>
<td>Introduction to Business</td>
</tr>
</tbody>
</table>

HISTORY (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 1483</td>
<td>U.S. History to 1865 or</td>
</tr>
<tr>
<td>HIST 1493</td>
<td>U.S. History Since 1865</td>
</tr>
</tbody>
</table>

MATHEMATICS (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1513</td>
<td>College Algebra</td>
</tr>
<tr>
<td>MATH 2003</td>
<td>Business Mathematics</td>
</tr>
</tbody>
</table>

PHILOSOPHY (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 1213</td>
<td>Ethics</td>
</tr>
</tbody>
</table>

POLITICAL SCIENCE (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 1113</td>
<td>U.S. Government</td>
</tr>
</tbody>
</table>

ORAL COMMUNICATIONS (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPCH 1113</td>
<td>Introduction to Speech Communications</td>
</tr>
<tr>
<td>SPCH 2313</td>
<td>Small Group Communications</td>
</tr>
</tbody>
</table>

INTERDEPARTMENTAL REQUIREMENTS: 4 CREDIT HOURS

GENERAL TECHNOLOGIES (4 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTGE 1111</td>
<td>College Cornerstone</td>
</tr>
<tr>
<td>CS 1013</td>
<td>Computer Literacy & Applications</td>
</tr>
</tbody>
</table>
Diesel & Heavy Equipment Technology – Komatsu ACT (Advanced Career Training)

Associate in Applied Science (87 credit hours)

KOMATSU ACT is a Komatsu America International Company and Komatsu distributor sponsored heavy equipment technician program. An important feature of the program is that each semester a student alternates seven and one-half weeks on campus and seven and one-half weeks at the sponsoring distributor. The intensive method of study and practice prepares a high performance technician that the participating Komatsu distributors demand. After six semesters of on-campus classes and paid internships, graduates typically stay with the Komatsu distributor as a full time employee.

Komatsu technicians maintain, service, diagnose and repair machines and equipment used in all forms of construction, mining, materials handling and other industrial activities. Technicians diagnose problems, disassemble and examine for defects and excessive wear, recondition or replace parts. They test and adjust components and systems to insure proper operation and to prevent failures. They use sophisticated diagnostic equipment. Personal computers are used for diagnostics, record keeping and communication within the shops, offices and with customers.

Typical progression within a company includes journeyman technician, field technician, specialist/master technician. Potential management advances include foreman/supervisor, service manager, parts manager, product support manager, trainer and various executive-level positions. A student can expect nearly 100% job placement rate, low faculty/student ratio and paid student internships.

PROGRAM ENTRY REQUIREMENTS:
1. Meet institutional requirements and
2. Obtain an approved dealer sponsor.

For more detailed information, please contact the Heavy Equipment & Vehicle Institute office at 918-293-4710.

DEPARTMENTAL REQUIREMENTS: 56 CREDIT HOURS

KOMATSU (56 CREDIT HOURS)
DHEK 1104 Komatsu General Basics
DHEK 1124 Komatsu Parts and Service Publications
DHEK 1143 Komatsu Internship I
DHEK 1216 Komatsu Engines and Fuel Systems
DHEK 1243 Komatsu Internship II
DHEK 1323 Komatsu Basic Hydraulics
DHEK 1333 Komatsu Basic Electrical Systems
DHEK 1343 Komatsu Internship III or
DHEE 2033 Diesel Skills I *
DHEK 2416 Komatsu Wheel Loaders
DHEK 2443 Komatsu Internship IV or
DHEE 2043 Diesel Skills II *
DHEK 2516 Komatsu Hydraulic Excavators
DHEK 2543 Komatsu Internship V or
DHEE 2053 Diesel Skills III *
DHEK 2626 Komatsu Capstone
DHEK 2653 Vehicle Air Conditioning Systems

* Option available for career technology center students in approved cooperative alliance programs.

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

BEHAVIORAL SCIENCES (3 CREDIT HOURS)
PSYC 1113 Introductory Psychology or
PSYC 2313 Psychology of Personal Adjustment or
SOC 1113 Introductory Sociology

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1033 Technical Writing I and
ENGL 2033 Technical Writing II or
ENGL 1113 Freshman Composition I and
ENGL 1213 Freshman Composition II

HISTORY (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865

MATHEMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra or
MATH 2003 Business Mathematics

PHILOSOPHY (3 CREDIT HOURS)
PHIL 1213 Ethics

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 1113 Introduction to Speech Communications
SPCH 2313 Small Group Communications

INTERDEPARTMENTAL REQUIREMENTS: 7 CREDIT HOURS

GENERAL TECHNOLOGIES (7 CREDIT HOURS)
CS 1013 Computer Literacy & Applications
GTGE 1111 College Cornerstone
GTCT 1183 Welding
Diesel & Heavy Equipment Technology – MHC

Kenworth Truck Technology

Associate in Applied Science
(87 credit hours)

The MHC Kenworth Truck Technology program is supported by the Murphy-Hoffman Company. An important feature of the program is that each semester students will attend seven and one-half weeks of classes on campus, then the remainder of the semester at a MHC Kenworth dealership on a paid internship. This intensive method of instruction prepares a high performance technician that MHC Kenworth demands. Graduates typically stay with the sponsoring dealership as a full-time employee.

Kenworth trucks are becoming more advanced and require highly trained technicians to ensure proper diagnosis and repair. To work on Kenworth’s new technologies, service technicians require a thorough knowledge of math, science, reading/comprehension, and writing skills to acquire an advanced understanding of engines, transmissions, differentials, electrical and electronic systems, chassis, air conditioning, brakes, and steering. As front line employees with direct customer contact, today’s service technician also requires interpersonal skills to communicate with customers, peers and management.

The student can expect nearly 100% job placement rate, low faculty/student ratio and paid internships.

PROGRAM ENTRY REQUIREMENTS:
1. Meet institutional requirements and
2. Obtain an approved dealer sponsor.

For more detailed information, please contact the Heavy Equipment & Vehicle Institute office at 918-293-4710.
Diesel & Heavy Equipment Technology – Manitowoc LIFT

Associate in Applied Science (89 credit hours)

Since building its first lattice-boom crane in 1925, Manitowoc Cranes has been a global leader in lift solutions. The brands under the Manitowoc umbrella include a collection of the most respected names in lifting which include Manitowoc-lattice-boom crawler cranes, Potain tower cranes, Grove and GMK mobile hydraulic cranes and National Crane articulating and telescoping cranes are built, sold and serviced at multiple locations in five continents.

Manitowoc CraneCARE is the world's most advanced service and support program, designed to provide continuous support for Manitowoc Crane Group products. The Manitowoc CraneCARE slogan, "Wherever. Whenever. Whatever. We're There™", signals their commitment to total customer satisfaction.

Students in the Manitowoc LIFT program develop a broad understanding of Grove and GMK mobile hydraulic cranes and National Crane articulating and telescoping cranes. This includes engines, hydraulics, power trains, electrical and electronic systems, test procedures, and diagnostic tools. In addition to the technical curriculum, OSUIT offers courses in areas such as math, composition/technical writing, psychology, history, and ethics. This background in communications and interpersonal skill gives graduates the edge in getting advancement and promotions on the job.

Students are dealer-sponsored. This means there is nearly a 100% job placement rate among students who have earned an Associate in Applied Science Degree in the Manitowoc LIFT program from OSU Institute of Technology.

PROGRAM ENTRY REQUIREMENTS

1. Meet institutional requirements and
2. Obtain an approved dealer sponsor.
3. Met all deficiencies.

For more detailed information, please contact the Heavy Equipment & Vehicle Institute office at 918-293-4710.

DEPARTMENTAL REQUIREMENTS: 55 CREDIT HOURS

DHE TECHNOLOGY - MANITOWOC CRANE (55 CREDIT HOURS)

DHEW 1114 Fundamentals of Maintenance
DHEW 1122 Parts and Service Publications
DHEW 1133 Internship I
DHEW 1212 Engine Principles
DHEW 1224 Crane Terminology and Operation
DHEW 1233 Internship II
DHEW 1313 Basic Fluid Power
DHEW 1324 Basic Electrical Systems
DHEW 1333 Internship III
DHEW 1343 Power Train
DHEW 2413 Brakes, Steering, & Chassis
DHEW 2422 Vehicle Air Conditioning Systems
DHEW 2433 Internship IV
DHEW 2543 National Level I & National Level II
DHEW 2553 Grove Level I & Grove Level II
DHEW 2553 Internship V
DHEW 2624 GMK Level I & GMK Level II
DHEW 2633 Manitowoc Capstone

GENERAL EDUCATION REQUIREMENTS: 27 CREDIT HOURS

BEHAVIORAL SCIENCE (3 CREDIT HOURS)
PSYC 1113 Introductory Psychology
PSYC 2313 Psychology of Personal Adjustment
SOC 1113 Introductory Sociology

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1033 Technical Writing I and
ENGL 2033 Technical Writing II or
ENGL 1113 Freshman Comp I and
ENGL 1213 Freshman Comp II

GENERAL BUSINESS (3 CREDIT HOURS)
BADM 1113 Introduction to Business

HISTORY (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865
HIST 1493 U.S. History Since 1865

MATHEMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra
MATH 2403 Business Mathematics

PHILOSOPHY (3 CREDIT HOURS)
PHIL 1213 Ethics

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 1113 Introduction to Speech Communications
SPCH 2313 Small Group Communications

INTERDEPARTMENTAL REQUIREMENTS: 7 CREDIT HOURS

GENERAL TECHNOLOGIES (7 CREDIT HOURS)
CS 1013 Computer Literacy & Applications
GTGE 1111 College Cornerstone
GTCT 1183 Welding
Diesel & Heavy Equipment Technology – SouthWestern Association Industrial & Farm Equipment

Associate in Applied Science (88 credit hours)

Founded in 1889, the SouthWestern Association was established by a progressive group of independent hardware and farm implement/mercantile dealers to help increase their profitability and solve common problems. While the Association’s scope of interest has evolved over time, the basic concept of working together for the common good remains the same.

Ask any group of farm and industrial equipment dealers about the biggest challenges they face, and the lack of qualified service technicians is a frequent answer. Each year, as equipment becomes more technologically advanced, the need for skilled technicians grows. SouthWestern Association is addressing this problem with the new Industrial and Farm Equipment Technician Program at OSU Institute of Technology.

An important feature of the program is that each semester a student alternates seven and one-half weeks on campus and seven and one-half weeks at the sponsoring SWA distributor. The intensive method of study and practice prepares a high performance technician that the participating SWA distributors demand. After six semesters of on-campus classes and five paid internships, graduates typically stay with the SWA distributor as a full time employee. Technicians maintain service, diagnose and repair machines and equipment used in all forms of agricultural and industrial activities. A student can expect nearly 100% job placement rate, low faculty/student ratio and paid internships.

For more detailed information, please contact the Heavy Equipment & Vehicle Institute office at 918-293-4710.
Information Technologies

Associate in Applied Science (61 credit hours)

Virtually every industry today depends on computers. Consequently, few other vocational pursuits empower individuals to work in such a wide array of industries and environments.

The Information Technologies program works closely with industry partners to incorporate the latest business practices, emerging technologies and professional certifications into authentic learning environments. The Associate in Applied Science in Information Technologies is designed for individuals who want to take advantage of the program's unique, hands-on, project-based and customer-focused approach to preparing individuals for exciting and successful careers, and fall into one or more of the following categories:

1. Wish to launch a career in IT as soon as possible.
2. Intend to pursue the Bachelor of Technology in Information Technologies at OSU Institute of Technology.
3. Want to build on considerable work experience and complete a degree to further career.
4. Complete one or more professional industry certifications.

Individuals who wish to undertake 2000-level information security coursework are required to obtain clear background reviews.

The minimum GPA required for graduation is 2.50.

For the latest program information, please contact the Information Technologies office at 918-293-5440 or info@tech.okstate.edu.

DEPARTMENTAL COURSES: 30 CREDIT HOURS

INFORMATION TECHNOLOGIES CORE REQUIREMENTS (24 CREDIT HOURS)

ITD 1213 Hardware Systems Support
ITD 1223 Network Systems
ITD 1243 Principles of Information Security
ITD 1253 Object-Oriented Programming using C#
ITD 1353 Web Programming & Development
ITD 2203 Database Systems
ITD 2223 Operating Systems
ITD 2313 Script Programming

APPROVED ELECTIVES (6 CREDIT HOURS)

GENERAL EDUCATION REQUIREMENTS: 30 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1113 Freshman Composition I
ENGL 1213 Freshman Composition II

HISTORY (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History since 1865

MATHEMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra

PHILOSOPHY (6 CREDIT HOURS)
PHIL 1213 Ethics
PHIL 1313 Introduction to Logic

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

APPROVED ELECTIVE (3 CREDIT HOURS)
From Social Sciences, Foreign Language or Fine Arts

GENERAL BUSINESS (3 CREDIT HOURS)
BADM 1113 Introduction to Business or
MGMT 2243 Small Business Management or
MGMT 2913 Leadership & Organizational Behavior

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 1113 Introduction to Speech Communications or
SPCH 2313 Small Group Communications
Information Technologies

Associate in Science (63 credit hours)

Well-trained individuals with high-level information technology skills will always be in demand, especially as computers and the Internet play increasingly important roles in contemporary society. In fact, considerable expertise in and experience with information technologies are becoming indispensable to most professionals. The Associate in Science in Information Technologies is designed primarily for individuals who want to take advantage of the program’s unique, hands-on approach to computer education, and fall into one or more of the following categories:

5. Intend to pursue a bachelor’s degree at another college or university.
6. Want to build on considerable work experience and complete a degree to further career.
7. Complete one or more professional industry certifications.

As with any Associate in Science degree, students are encouraged to check the specific requirements of the college or university to which they plan to transfer.

Individuals who wish to undertake 2000-level information security coursework are required to obtain clear background reviews.

The minimum overall GPA required for graduation is 2.50.

For the latest program information, please contact the Information Technologies office at 918-293-5440 or infotech@okstate.edu.

DEPARTMENTAL COURSES: 24 CREDIT HOURS

INFORMATION TECHNOLOGIES CORE REQUIREMENTS (18 CREDIT HOURS)

ITD 1213 Hardware Systems Support
ITD 1223 Network Systems
ITD 1243 Principles of Information Security
ITD 1253 Object-Oriented Programming using C#
ITD 1353 Web Programming & Development
ITD 2223 Operating Systems

ELECTIVE COURSEWORK (6 CREDIT HOURS)

GENERAL EDUCATION REQUIREMENTS: 38 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT HOURS)

ENGL 1113 Freshman Composition I
ENGL 1213 Freshman Composition II

HISTORY (3 CREDIT HOURS)

HIST 1483 U.S. History to 1865 or HIST 1493 U.S. History Since 1865

MATHEMATICS (3 CREDIT HOURS)

MATH 1513 College Algebra

PHILOSOPHY (6 CREDIT HOURS)

PHIL 1213 Ethics
PHIL 1313 Introduction to Logic

POLITICAL SCIENCE (3 CREDIT HOURS)

POLS 1113 U.S. Government

APPROVED ELECTIVE (3 CREDIT HOURS)

From Social Sciences, Foreign Language or Fine Arts

ORAL COMMUNICATIONS (3 CREDIT HOURS)

SPCH 1113 Introduction to Speech Communications
SPCH 2313 Small Group Communications

GENERAL BUSINESS (3 CREDIT HOURS)

BADM 1113 Introduction to Business or
MGMT 2243 Small Business Management or
MGMT 2913 Leadership & Organizational Behavior

SCIENCE (8 CREDIT HOURS)

(one course must be a lab science course)
BIOL 1014 General Biology (non-majors)
BIOL 1114 General Biology
BIOL 1404 General Botany
BIOL 1604 Zoology
BIOL 2104 Human Anatomy
CHEM 1314 General Chemistry I
GEOL 1014 Earth Science
PHYS 1204 General Physical Science
PHYS 1114 General Physics I

INTERDEPARTMENTAL REQUIREMENTS: 1 CREDIT HOUR

GENERAL TECHNOLOGIES (1 CREDIT HOUR)

GTGE 1111 College Cornerstone

For the latest program information, please contact the Information Technologies office at 918-293-5440 or infotech@okstate.edu.
Information Technologies

Bachelor of Technology

(121 credit hours)

As organizations increasingly use networks and the Internet to improve their competitiveness, efficiency, and quality of service; and as information technology systems become more complex so will the need for individuals with the right skills, knowledge, and credentials. This degree prepares individuals for a range of professional opportunities within the information technology field with program options in:

Information Assurance and Forensics

This option prepares individuals to assess computer and network security, implement appropriate measures for those vulnerabilities, and investigate cyber criminal activities. Topics include: network intrusion detection systems, biometrics, malware, HIPAA, mobile and network forensics, Forensics Tool Kit and EnCase, social engineering, cyber law, cryptography, and control systems security.

Note: OSUIT’s information assurance and forensics curriculum has been certified by the National Security Agency’s Committee on National Security Systems (CNSS). Students satisfactorily completing the appropriate security coursework may receive the corresponding CNSS certification(s).

Network Infrastructure

This option prepares individuals to design, implement, and manage network infrastructure, operations and services. Topics include Cisco, UNIX, open source technologies, virtualization, TCP/IP, voice over IP, Active Directory, network administration, virtual private networks, and wireless technologies.

Sample positions include: Network Architect, Infrastructure Analyst, Network Administrator, Infrastructure Engineer, and Network Operations Analyst.

Software Development

This option prepares individuals to design, develop, document, test, implement and maintain mobile, computer, database, and web applications. Topics include C#, C++, Java, .NET, SQL, scripting languages, mobile development, game programming, dynamic web programming, client-server application development, and software development project management.

Sample positions include: Programmer/Analyst; Applications Developer, Software Tester, Systems Analyst, Database Analyst, Webmaster, and Web Administrator.

IT Enterprise Management

This option prepares individuals to lead information technology organizations. Topics include IT leadership, business intelligence, sustainability, compliance, quality assurance, strategic planning, vendor relations, budget and contract administration, project management, and enterprise management systems.

Sample positions include: IT Manager, Director of Information System, Chief Information Officer, and Chief Technology Officer.

Students who wish to undertake a Bachelor of Technology degree are required to meet or exceed the following admissions standards:

- ACT score of 19 or higher in all subcomponents, or Compass scores of 81 in Reading, 74 in English, 45 in College Algebra and a combined Reading and College Algebra score of 123, or have removed any identified deficiencies through appropriate remediation.

Students will be admitted to the Bachelor of Technology program contingent on completion of an Associate in Applied Science degree or higher, and submission of both an OSUIT and a completed Bachelor of Technology application.

A background review is required before taking 2000, 3000, or 4000-level information security coursework.

The minimum overall GPA required for graduation is 2.50.

For the latest program-specific information, please contact the Information Technologies office at 918-293-5440 or info tech@okstate.edu.

DEPARTMENTAL REQUIREMENTS:

67 CREDIT HOURS

LOWER-DIVISION IT CORE REQUIREMENTS

(24 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITD 1213</td>
<td>Hardware Systems Support</td>
</tr>
<tr>
<td>ITD 1223</td>
<td>Network Systems</td>
</tr>
<tr>
<td>ITD 1243</td>
<td>Principles of Information Security</td>
</tr>
<tr>
<td>ITD 1253</td>
<td>Object Oriented Programming using C#</td>
</tr>
<tr>
<td>ITD 1353</td>
<td>Web Programming & Development</td>
</tr>
<tr>
<td>ITD 2203</td>
<td>Database Systems</td>
</tr>
<tr>
<td>ITD 2223</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>ITD 2313</td>
<td>Script Programming</td>
</tr>
</tbody>
</table>

LOWER-DIVISION OPTION ELECTIVE

(3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITD 2153</td>
<td>LAN/WAN Implementation & Support</td>
</tr>
<tr>
<td>ITD 2413</td>
<td>Enterprise Security Management</td>
</tr>
<tr>
<td>ITD 2263</td>
<td>GUI Development</td>
</tr>
</tbody>
</table>

*Network Infrastructure option
*Information Assurance and Forensics option
*IT Enterprise Management option
*Software Development option

LOWER-DIVISION APPROVED ELECTIVE

(3 CREDIT HOURS)

UPPER-DIVISION OPTION COURSE WORK

(9 CREDIT HOURS)

INFORMATION ASSURANCE AND FORENSICS OPTION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITD 3433</td>
<td>Digital Forensics</td>
</tr>
<tr>
<td>ITD 3443</td>
<td>Network Security</td>
</tr>
<tr>
<td>ITD 3523</td>
<td>Computer Security</td>
</tr>
</tbody>
</table>

NETWORK INFRASTRUCTURE OPTION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITD 3253</td>
<td>Network Administration</td>
</tr>
<tr>
<td>ITD 3443</td>
<td>Network Security</td>
</tr>
<tr>
<td>ITD 3543</td>
<td>Enterprise Networking</td>
</tr>
</tbody>
</table>
SOFTWARE DEVELOPMENT OPTION
ITD 3323 Enterprise Framework Programming
ITD 3333 Distributed Application Development
ITD 3713 Software Development Management

IT ENTERPRISE MANAGEMENT OPTION
ITD 3163 IT Enterprise Operations
ITD 3613 Emerging and Converging Technologies
ITD 3673 IT Enterprise Management

UPPER-DIVISION APPROVED ELECTIVES (9 CREDIT HOURS)

UPPER-DIVISION IT CORE REQUIREMENTS (19 CREDIT HOURS)
ITD 3201 Employment Orientation
ITD 4800 Internship (12 Credit Hours) or Internship (6 Credit Hours) and Approved Electives (6 Credit Hours)
ITD 4113 IT Project Management
ITD 4123 Applied Research and Development

GENERAL EDUCATION REQUIREMENTS: 53 CREDIT HOURS

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1113 Freshman Composition I
ENGL 1213 Freshman Composition II

HISTORY (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865

MATHMATIC (3 CREDIT HOURS)
MATH 1513 College Algebra

PHILOSOPHY (6 CREDIT HOURS)
PHIL 1213 Ethics
PHIL 1313 Introduction to Logic

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

APPROVED ELECTIVES (3 CREDIT HOURS)
From Social Sciences, Foreign Language or Fine Arts

GENERAL EDUCATION PROGRAM REQUIREMENTS (21 CREDIT HOURS)

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 1113 Introduction to Speech or
SPCH 2313 Small Group Communications

GENERAL BUSINESS (3 CREDIT HOURS)
BADM 1113 Introduction to Business
MGMT 2243 Small Business Management
MGMT 2913 Leadership & Organizational Behavior

MATHMATIC (6 CREDIT HOURS)
MATH 3103 Discrete Mathematics
STAT 2013 Elementary Statistics

APPROVED ELECTIVES (9 CREDIT HOURS)

GENERAL EDUCATION SCIENCE REQUIREMENTS (8 CREDIT HOURS)
(One course must be a lab course.)

SCIENCE (8 CREDIT HOURS)
Biol 1014 General Biology (non-majors)
Biol 1114 General Biology
Biol 1404 General Botany
Biol 1604 Zoology
Biol 2104 Human Anatomy
CHEM 1314 General Chemistry I
GEOL 1014 Earth Science
PHYS 1114 General Physics I
PHYS 1204 General Physical Science

INTERDEPARTMENTAL REQUIREMENTS: 1 CREDIT HOUR
GTGE 1111 College Cornerstone
Graphic Design Technology

Associate in Applied Science (91 credit hours)

The complexity of today's technology requires precise communications. The function of the graphic designer is to apply creative skill and technical knowledge to attract and influence the consumer through visual stimulation. These responsibilities require a thorough knowledge of both conventional and electronic applications for design, layout and production. The ability to be a creative problem solver is extremely important for today's graphic designer.

Visual media communicators form the nucleus of the broadest field of applied arts, whether it is called graphic design, commercial art or visual communications. To be a graphic designer requires knowledge and skills in drawing, design, typography, computer, and mechanical production.

Recent graduates have attained recognition as layout artists, designers, illustrators and art directors with leading advertising agencies, industrial graphic departments and publishers. Graduates with experience can establish successful and satisfying careers as graphic designers, art directors and creative directors for advertising agencies and design studios or as freelance designers.

PROGRAM ENTRY REQUIREMENTS:

Students may not have any academic deficiencies at the time of enrollment into the Graphic Design Program.

For more detailed information, please contact the Visual Communications Division office at 918-293-5050.

DEPARTMENTAL COURSES: 66 CREDIT HOURS

* A minimum program grade average of 2.0 is required, with a minimum grade of 'C' in each course of Departmental Requirements.

*GRAPHIC DESIGN (42 CREDIT HOURS)

GRD 1133 Basic Drawing
GRD 1143 Basic Design
GRD 1213 Advertising Design I
GRD 1333 Design Production
GRD 1373 Survey of Western Design
GRD 2413 Advertising Design II
GRD 2423 Advanced Design Production
GRD 2513 Design/Drawing Illustration
GRD 2523 Identity Design
GRD 2543 Graphic Design Practicum
GRD 2623 Graphic Design
GRD 2696 Graphic Design Capstone
GRD 2803 Graphic Design Internship

*MULTIMEDIA TECHNOLOGY (9 CREDIT HOURS)

MMT 1143 Intro to Motion Graphics
MMT 1113 Introduction to 3D (or)
MMT 1153 Introduction to Video Editing (or)
MMT 1303 Multimedia Authoring I
MMT 2423 Introduction to Web Design

*VISUAL COMMUNICATIONS (15 CREDIT HOURS)

VIS 1123 InDesign Publishing I
VIS 1203 Introduction to Typography
VIS 1223 InDesign Publishing II
VIS 1343 Digital Illustration
VIS 1373 Digital Imaging

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

BEHAVIORAL SCIENCES (3 CREDIT HOURS)

PSYC 1113 Introductory Psychology or
PSYC 2313 Psychology of Personal Adjustment or
SOC 1113 Introductory Sociology

COMMUNICATION ARTS (6 CREDIT HOURS)

ENGL 1113 Freshman Composition I
ENGL 1213 Freshman Composition II

HISTORY (3 CREDIT HOURS)

HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History since 1865

MATHEMATICS (3 CREDIT HOURS)

MATH 1513 College Algebra or
MATH 2003 Business Mathematics

PHILOSOPHY (3 CREDIT HOURS)

PHIL 1213 Ethics

POLITICAL SCIENCE (3 CREDIT HOURS)

POLS 1113 U.S. Government

ORAL COMMUNICATIONS (3 CREDIT HOURS)

SPCH 1113 Introduction to Speech Communications or
SPCH 2313 Small Group Communications

INTERDEPARTMENTAL REQUIREMENTS: 1 CREDIT HOUR

GENERAL TECHNOLOGIES (1 CREDIT HOUR)

GTGE 1111 College Cornerstone
Multimedia Technology

Associate in Applied Science (91 credit hours)

Multimedia Technology is an exciting field of integrated digital communications that is forging new employment opportunities for those who can transform sound, graphics, text, animation and video into a compelling package of information for business, education and the entertainment industries.

Multimedia specialists in Web/Design/Authoring produce business presentations, training programs, point-of-sales literature for information kiosks, product catalogs, games, electronic books and magazines and educational materials. Multimedia specialists in Digital Videography Production also produce business presentations, training programs, etc., with a greater focus on motion capture, editing, audio, graphics and post production skills. The internet and corporate intranets are major users of multimedia technology.

Multimedia specialists in Web/Design/Authoring learn to be proficient in front end web design and development. They are able to create web 2.0 sites with custom content management systems (CMS) templates that are able to incorporate blogs, social media & video rich content.

Multimedia specialist in Digital Videography Production learn the post production skills of editing audio and video, animation, special effects and motion graphics. These skills are used to produce work for broadcast design, commercials, title sequences, music videos and business presentations.

Courses in design, drawing, typography, illustration, imaging, telecommunications and programming provide the foundation skills and knowledge to be successful in these fields of specialization.

PROGRAM ENTRY REQUIREMENTS:

Applicants must meet all the following requirements, in order to be considered for acceptance into the Multimedia Program:

1. Submit a multimedia program questionnaire.
2. Submit two letters of recommendation from professionals not related to them. (Teacher, multi-media professional, employer, counselor, etc.).
3. Meet minimum requirements for Math, English and Reading as determined by OSU Institute of Technology assessment.
4. Copies of transcripts from all previous colleges attended.
5. Personal interview will not be scheduled until first four requirements are met.

For more detailed information, please contact the Visual Communications Division office at 918-293-5050.

DEPARTMENTAL REQUIREMENTS FOR DIGITAL VIDEOGRAPHY PRODUCTION OPTION: 66 CREDIT HOURS

*GRAPHIC DESIGN (6 CREDIT HOURS)
GRD 1133 Basic Drawing
GRD 1143 Basic Design

*MULTIMEDIA TECHNOLOGY DIGITAL VIDEOGRAPHY PRODUCTION (39 CREDIT HOURS)
MMT 1113 Intro to 3D
MMT 1153 Introduction to Video Editing
MMT 1213 Introduction to Web Design
MMT 1233 Audio Production
MMT 2233 Post Production Graphics I
MMT 2253 Video Post Production I
MMT 2263 Video Post Production II
MMT 2463 Interface Design - DVD
MMT 2716 Multimedia Capstone
MMT 2806 Multimedia Internship

VIS 1123 InDesign Publishing I
VIS 1143 Intro to Motion Graphics
VIS 1203 Introduction to Typography
VIS 1343 Digital Illustration
VIS 1373 Digital Imaging
VIS 2433 Multimedia Practicum
VIS 2533 Advanced Digital Imaging

VISUAL COMMUNICATIONS (21 CREDIT HOURS)

*VISUAL COMMUNICATIONS (21 CREDIT HOURS)
VIS 1123 InDesign Publishing I

*VISUAL COMMUNICATIONS (21 CREDIT HOURS)
DEPARTMENTAL REQUIREMENTS FOR 3D MODELING OPTION:
66 CREDIT HOURS

*GRAPHIC DESIGN (9 CREDIT HOURS)
GRD 1133 Basic Drawing
GRD 1143 Basic Design
GRD 1243 Advanced Drawing

MULTIMEDIA TECHNOLOGY 3D
(48 CREDIT HOURS)
MMT 1113 Introduction to 3D
MMT 1153 Intro to Video Editing
MMT 1201 Acting & Improvisation
MMT 1202 Creative Problem Solving
MMT 1223 3D Modeling I
MMT 1323 3D Modeling II
MMT 1433 2D Animation
MMT 1453 Storyboarding
MMT 1463 Beginning ZBrush
MMT 2113 Fundamentals of Game Design
MMT 2143 3D Motion Graphics & Special Effects
MMT 2433 3D Animation I
MMT 2533 3D Animation II
MMT 2716 Multimedia Capstone
MMT 2806 Multimedia Internship

VISUAL COMMUNICATIONS
(9 CREDIT HOURS)
VIS 1373 Digital Imaging
VIS 2433 Multimedia Practicum
VIS 2533 Advanced Digital Imaging

GENERAL EDUCATION
REQUIREMENTS: 25 CREDIT HOURS
FOR ALL THREE OPTIONS

BEHAVIORAL SCIENCES
(3 CREDIT HOURS)
PSYC 1113 Introductory Psychology or
PSYC 2313 Psychology of Personal Adjustment or
SOC 1113 Introductory Sociology

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1113 Freshman Composition I
ENGL 1213 Freshman Composition II

HISTORY (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865

MATHEMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra

PHILOSOPHY (3 CREDIT HOURS)
PHIL 1213 Ethics

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 1113 Introduction to Speech Communications or
SPCH 2313 Small Group Communications

INTERDEPARTMENTAL
REQUIREMENTS:
1 CREDIT HOUR

GENERAL TECHNOLOGIES
(1 CREDIT HOUR)
GTGE 1111 College Cornerstone
Photography Technology

Associate in Applied Science (88 credit hours)

Photography has quite accurately been described as the universal language, needing no interpretation. The visual images created by skilled artisans portray our feelings, our moods, our history and they mirror our imagination.

Photography bridges many barriers and, combined with the skills of artists and printers, provides our world with endless educational and recreational materials.

The ability to continually produce high quality images requires mastering precise skills and following basic practices such as correct exposure, proper camera handling techniques and the understanding of aperture and shutter speed manipulations to control the impact of the finished image.

Today’s photographer must also be skilled in the use of new technologies that have been introduced to the photographic industry. Digital imaging, digital enhancement and filmless digital cameras are accepted tools for accomplishing photographic tasks in today’s ever-changing photographic industry.

Graduates may explore employment in advertising, commercial and portrait studios, newspapers and magazines, photographic laboratories and even self-employment in one or more of the many specialty areas.

PROGRAM ENTRY REQUIREMENTS:

Applicants must meet all the following requirements, in order to be considered for acceptance into the Photography program:

1. Submit a Photography program questionnaire.
2. Submit two letters of recommendation from professionals not related to them. (Teacher, professional, employer, counselor, etc.).
3. Meet minimum requirements for Math, English, and Reading as determined by OSU Institute of Technology assessment.
4. Copies of transcripts from all previous colleges attended.
5. Submit a photography portfolio or demo reel.
6. Personal interview will not be scheduled until first five requirements are met.

For more detailed information, please contact the Visual Communications Division office at 918-293-5050.

DEPARTMENTAL REQUIREMENTS: 63 CREDIT HOURS

* A minimum program grade average of 2.0 is required, with a minimum grade of ‘C’ in each course of Departmental Requirements.

*PHOTOGRAPHY (63 CREDIT HOURS)

PHO 1113 Fundamentals of Photography
PHO 1123 Digital Darkroom
PHO 1133 Digital Photography
PHO 1243 Photographic think Tank
PHO 1313 Studio I
PHO 1353 Photojournalism
PHO 2413 Studio II
PHO 2423 Portrait Photography
PHO 2453 Advanced Digital Photography
PHO 2483 Color and Digital Concepts
PHO 2503 Introduction to Video Production
PHO 2513 Editorial Portraiture
PHO 2523 Photographic Design
PHO 2696 Photography Capstone
PHO 2703 Advertising Photography
PHO 2713 Advanced Portrait Photography
PHO 2723 Documentary Photography
PHO 2763 Advanced Photojournalism
PHO 2773 Visual Validation
PHO 2803 Photography Internship

GENERAL EDUCATION REQUIREMENTS: 24 CREDIT HOURS

BEHAVIORAL SCIENCES
(3 CREDIT HOURS)
PSYC 1113 Introductory Psychology or
PSYC 2313 Psychology of Personal Adjustment or
SOC 1113 Introductory Sociology

COMMUNICATION ARTS (6 CREDIT HOURS)
ENGL 1113 Freshman Composition I
ENGL 1213 Freshman Composition II

HISTORY (3 CREDIT HOURS)
HIST 1483 U.S. History to 1865 or
HIST 1493 U.S. History Since 1865

MATHEMATICS (3 CREDIT HOURS)
MATH 1513 College Algebra or
MATH 2003 Business Mathematics

PHILOSOPHY (3 CREDIT HOURS)
PHIL 1213 Ethics

POLITICAL SCIENCE (3 CREDIT HOURS)
POLS 1113 U.S. Government

ORAL COMMUNICATIONS (3 CREDIT HOURS)
SPCH 1113 Introduction to Speech Communications or
SPCH 2313 Small Group Communications

INTERDEPARTMENTAL REQUIREMENTS: 1 CREDIT HOUR

GENERAL TECHNOLOGIES (1 CREDIT HOUR)
GTGE 1111 College Cornerstone
Watchmaking & Microtechnology

Associate in Applied Science (94 credit hours)

OSU Institute of Technology’s Watchmaking program offers intense, thorough training in this challenging and exacting art. Students develop the hand skills necessary for making and maintaining tools, servicing and repairing fine timepieces, and manufacturing watch parts. Critical thinking and problem solving abilities are strengthened so the mind becomes as much of a part of the solution as the tools in the watchmaker’s hand. These traditional skills, coupled with equipment utilizing the latest technology, allow our graduates to work to a higher technological standard than ever before. OSUIT is a SAWTA (Swiss American Watchmaker Training Alliance) certified school which works in conjunction with AWCI (American Watch and Clock Institute) and their CW 21 examination. Through our partnerships we offer the opportunity to obtain certification through both SAWTA and AWCI. These exams are designed specifically to develop the type of skilled craftsman needed to service high-grade watches.

Our industry-driven integrated associate degree program ensures that our graduates are well-rounded, professional watchmakers. The Watchmaking and Microtechnology faculty have earned reputations for excellence in this worldwide industry. The labs are housed in a state of the art, modern facility, and the equipment is, in many cases, the same as that used in official service centers. This helps ensure that the experience gained in the program will transfer easily to the real world. Career opportunities are numerous, both in the United States and abroad, with employment available in watch brand service centers, independent service centers, and jewelry stores being just a few of the many available options.

For more information, please contact the Watchmaking & Microtechnology Program by calling 918-293-5160 or by email at watch@okstate.edu.

DEPARTMENTAL COURSES: 72 CREDIT HOURS

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMT 1116</td>
<td>Career Cornerstone/Basic Microtechnology</td>
</tr>
<tr>
<td>WMT 1126</td>
<td>Advanced Microtechnology I</td>
</tr>
<tr>
<td>WMT 1216</td>
<td>Advanced Microtechnology II</td>
</tr>
<tr>
<td>WMT 1226</td>
<td>External Watch</td>
</tr>
<tr>
<td>WMT 1316</td>
<td>Quartz Watch Repair</td>
</tr>
<tr>
<td>WMT 1326</td>
<td>Mechanical Watch Repair</td>
</tr>
<tr>
<td>WMT 2416</td>
<td>Escapement/Oscillator</td>
</tr>
<tr>
<td>WMT 2426</td>
<td>Precision Timing/Automatic Watches</td>
</tr>
<tr>
<td>WMT 2516</td>
<td>Chronograph Watches</td>
</tr>
<tr>
<td>WMT 2526</td>
<td>Shop Management/Workflow Studies</td>
</tr>
<tr>
<td>WMT 2616</td>
<td>Estimating/Quality Control</td>
</tr>
<tr>
<td>WMT 2626</td>
<td>Advanced Watch Repair/Capstone</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION REQUIREMENTS: 22 CREDIT HOURS

COMMUNICATION ARTS (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1033</td>
<td>Technical Writing I</td>
</tr>
<tr>
<td>ENGL 1113</td>
<td>Freshman Composition I</td>
</tr>
</tbody>
</table>

HISTORY (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 1483</td>
<td>U.S. History to 1865</td>
</tr>
<tr>
<td>HIST 1493</td>
<td>U.S. History Since 1865</td>
</tr>
</tbody>
</table>

MATHEMATICS (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1513</td>
<td>College Algebra</td>
</tr>
<tr>
<td>MATH 1613</td>
<td>Trigonometry</td>
</tr>
</tbody>
</table>

PHILOSOPHY (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 1013</td>
<td>Ethics of Leadership</td>
</tr>
<tr>
<td>PHIL 1213</td>
<td>Ethics</td>
</tr>
</tbody>
</table>

POLITICAL SCIENCE (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 1113</td>
<td>U.S. Government</td>
</tr>
</tbody>
</table>

SCIENCE (4 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1114</td>
<td>General Physics I</td>
</tr>
</tbody>
</table>

ORAL COMMUNICATIONS (3 CREDIT HOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPCH 1113</td>
<td>Introduction to Speech Communications</td>
</tr>
<tr>
<td>SPCH 2313</td>
<td>Small Group Communications</td>
</tr>
</tbody>
</table>

ADMISSIONS REQUIREMENTS AND PROCESS

The number of students allowed to enroll in the program is limited. Therefore, students must successfully complete the admission requirements and process before being considered for enrollment into the program. In order to make an appropriate enrollment decision, consideration for acceptance into the program will be based upon the results of a thorough screening and interview process involving the following requirements and activities as listed:

1. Complete the college admissions process through OSU Institute of Technology which includes providing: an application for admission, official high school and college transcripts, ACT scores, academic assessment as needed, and appropriate paperwork for international students.

2. Demonstrate the ability to succeed in the program by:
 a) Taking a nationally-normed academic computerized placement test (Compass) available from the OSU Institute of Technology Assessment Center in person or via the web and either making the following minimum scores: Reading comprehension 81, writing skills 74, college algebra 45 or scoring a 19 or better on all ACT sub-tests.
 b) Passing a mechanical aptitude assessment.
 c) Passing a manual dexterity assessment.

3. Receive positive recommendations from participation in interview sessions with representatives of the program faculty and the program supervisor.

4. Read and acknowledge the estimated cost expenditures sheet.

5. Share information about your history, interests, plans and career goals by providing the following:
 a) A resume that describes your present skills and abilities and your volunteer and paid work experiences;
 b) An essay of 200-300 words that tells why you think this program is right for you. The essay should describe your goals and interests, what you hope to get out of the program and what you have done so far to prepare.

6. Provide a letter of recommendation from someone other than a family member.

7. Successful completion and submission of a background check. Information on which can be found here: http://www.osuit.edu/academics/watchmaking/background_check.pdf

Applicants will be notified of their acceptance or denial into the program following completion and evaluation of the admission process.
COURSE DESCRIPTIONS

ARRANGEMENT:

The course descriptions are grouped in alphabetical order (example: Accounting (ACCT) and in numerical order within the prefix).

COURSE NUMBERS:

Each course consists of a three to four-letter prefix (discipline) plus a four-digit number following the prefix. The first digit following the prefix designates the general course level: 1-freshman, 2-sophomore, 3-junior, 4-senior, and 0-designates a nontransferable course that does not apply to program requirements.

The fourth digit at right designates the number of credit hours. A course number ending in '0' designates a course with a variable credit of 1-9 credit hours.

PREREQUISITE(S):

Some courses have requirements that must be met prior to enrollment in that course. These are listed as course prerequisites at the end of the course description. Courses listed as ‘co-requisite’ are to be taken in the same semester as the course listed. Although not stated for every course, the Division Chair’s approval to enroll may be obtained in lieu of the prerequisite course where students have satisfied the requirement by other means.

SCHEDULING:

Some courses are not offered every semester. Therefore, students are encouraged to follow the plan of study and to work closely with a Faculty Advisor.

CODE LETTERS

The letters next to the General Education course names are code letters that designate the general education category for which the course may be used:

- Analytical and Quantitative Thought (A)
- Humanities (H)
- Natural Sciences (N)
- Social and Behavioral Sciences (S)
- Diversity (D)
- International Dimension (I)
- Scientific Investigation (L)

COURSE PREFIX KEY

- ACCT Accounting
- ACR Air Conditioning & Refrigeration
- ASL American Sign Language
- AUC Automotive Collision Repair
- AUMC MOPAR CAP, Automotive Service
- AUMF Ford ASSET, Automotive Service
- AUMG GM ASE, Automotive Service
- AUMP PRO-TECH, Automotive Service
- BADM Business Administration
- BIOL Biology Science
- BLD Building Construction
- CET Civil Engineering Technology
- CHEM Chemistry
- CNS Construction Technology
- CS Computer Science
- CUA Culinary Arts
- DCNH Diesel Case New Holland
- DHE Diesel & Heavy Equipment
- DHEA Aggreko Technician Training Program
- DHEC CAT Dealer Prep
- DHEG Gas Processors Association
- DHEK Komatsu ACT
- DHEM MHC Kenworth Truck Technology
- DHES SouthWestern Association Industrial & Farm Equipment
- DHEW Manitowoc LIFT
- ECON Economics
- ECNT Electrical Construction
- ENGL English
- ETD Electrical Engineering
- ETDE Electrical & Electronics
- ETDG Engineering Graphics
- ETDM Manufacturing Technology
- ETDP Power Plant Technology
- GAM Gaming
- GEN General Studies
- GEOG Geography
- GEOL Geology
- GRD Graphic Design
- GTAC General Technology, ACR
- GTAU General Technology, Automotive
- GTCT General Technology, Construction
- GTET General Technology, Engineering
- GTGE General Technology
- GTHE General Technology, Heavy Equipment
- GTIT General Technology, Information Technology
- HHP Health & Human Performance
- HIST History
- HUM Humanities
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Program Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVLP</td>
<td>High Voltage</td>
</tr>
<tr>
<td>ITD</td>
<td>Information Technology</td>
</tr>
<tr>
<td>MASC</td>
<td>Masonry</td>
</tr>
<tr>
<td>MATH</td>
<td>Mathematics</td>
</tr>
<tr>
<td>MCAG</td>
<td>Mechanized Agriculture</td>
</tr>
<tr>
<td>MGMT</td>
<td>Management</td>
</tr>
<tr>
<td>MKTG</td>
<td>Marketing</td>
</tr>
<tr>
<td>MMT</td>
<td>Multimedia</td>
</tr>
<tr>
<td>MVSK</td>
<td>Mvskoke Language</td>
</tr>
<tr>
<td>NSCI</td>
<td>Nutrition</td>
</tr>
<tr>
<td>NURS</td>
<td>Nursing</td>
</tr>
<tr>
<td>OIS</td>
<td>Office Information Systems Technology</td>
</tr>
<tr>
<td>OPT</td>
<td>Orthotic and Prosthetic Technologies</td>
</tr>
<tr>
<td>ORIE</td>
<td>College Strategies</td>
</tr>
<tr>
<td>PHIL</td>
<td>Ethics</td>
</tr>
<tr>
<td>PHO</td>
<td>Photography</td>
</tr>
<tr>
<td>PHYS</td>
<td>Physical Science</td>
</tr>
<tr>
<td>PIT</td>
<td>Pipeline Integrity</td>
</tr>
<tr>
<td>PLBG</td>
<td>Plumbing, Construction</td>
</tr>
<tr>
<td>PLNT</td>
<td>Plant Science</td>
</tr>
<tr>
<td>POLS</td>
<td>Political Science</td>
</tr>
<tr>
<td>PSYC</td>
<td>Psychology</td>
</tr>
<tr>
<td>READ</td>
<td>Reading Fundamentals</td>
</tr>
<tr>
<td>RESC</td>
<td>Residential Construction</td>
</tr>
<tr>
<td>SOC</td>
<td>Sociology</td>
</tr>
<tr>
<td>SOIL</td>
<td>Soil Science</td>
</tr>
<tr>
<td>SPAN</td>
<td>Spanish</td>
</tr>
<tr>
<td>SPCH</td>
<td>Speech Communications</td>
</tr>
<tr>
<td>STAT</td>
<td>Statistics</td>
</tr>
<tr>
<td>SURV</td>
<td>Surveying</td>
</tr>
<tr>
<td>TTEN</td>
<td>Toyota T-TEN, Automotive Service</td>
</tr>
<tr>
<td>VIS</td>
<td>Visual Communications</td>
</tr>
<tr>
<td>WMT</td>
<td>Watchmaking</td>
</tr>
</tbody>
</table>
ACCOUNTING (ACCT)

ACCT 2043
COST ACCOUNTING
Topics included in this course are cost accounting cycle, job-order and process cost techniques, joint costs, variance analysis, material and labor costing, EOQ, and factory overhead. Theory. Prerequisite: ACCT 2203.

ACCT 2090 (1-9 CREDIT HOURS)
SPECIAL PROJECTS
Special Projects are conducted as individual study under the supervision of an instructor. Projects may be undertaken in any area of accounting with credit hours assigned based on level and amount of effort involved. Theory/Lab. Prerequisite: The Division Chair’s approval.

ACCT 2103
FINANCIAL ACCOUNTING
This course involves the theory and practice of measuring and recording financial data for an economic unit; journalizing transactions; adjusting entries for revenue and expense items, inventories, depreciation, internal control with an emphasis on cash, current and long-term liabilities and accounting for corporation stock transactions. Course emphasis will be on the preparation and use of the income statement, balance sheet and statement of cash flows. Theory.

ACCT 2203
MANAGERIAL ACCOUNTING
This course is a study of the theory and practice of managerial accounting including analysis of cost behavior with an emphasis on the accumulation of product costs and budgeting for planning and performance evaluation. Other topics covered will include job order costing, process costing, cost-volume analysis, capital budgeting, standard costs and departmentalization. Theory. Prerequisite: ACCT 2103.

ACCT 2303
INTERMEDIATE ACCOUNTING I
Topics included in this course are the theoretical framework of accounting, review of the accounting cycle, present value analysis, current assets, inventory valuation and acquisition and disposal of fixed assets. Theory. Prerequisite: ACCT 2203.

ACCT 2333
INCOME TAX ACCOUNTING
This course is a study of current provisions of the tax structure and Internal Revenue Service Code and regulations that prepare students to perform tax analysis and problem solving techniques and prepare tax returns. Theory.

AIR CONDITIONING & REFRIGERATION (ACR)

ACR 1111
EPA CERTIFICATION INFORMATION
Instruction concerning the EPA rules and regulations to provide the student an opportunity to take and pass the EPA Certification test is given. Current rules and regulations concerning ozone depletion, CAA, and Montreal Protocol are taught. Theory. Offered in the fall and spring semesters.

ACR 1121
INTRODUCTION TO AIR CONDITIONING AND REFRIGERATION TECHNOLOGY
This course is an orientation into the world of Air Conditioning and Refrigeration technology including career opportunity exploration, licensing requirements, safety, tools and your college strategies. Theory. Offered in the fall and spring semesters.

ACR 1126
ACR SYSTEM APPLICATION
This Career Cornerstone course covers the use of hand tools and industry specific tools as well as copper tube flaring, swaging, cutting and brazing. It includes the theory of the compression refrigeration cycle to include components which make up a refrigeration system, and the operation and analysis of basic refrigeration systems including evacuation, charging, recovery, control adjustments and efficiency checks. This course also emphasizes the career opportunities in the air conditioning and refrigeration fields and continues the student’s work on the Career Passport. Theory/Lab. Offered in the fall and spring semesters.

ACR 1203
ELECTRICAL CONTROLS
This course will include a study of basic electrical properties and their behavior in series, parallel and combination circuits. The theories of operation of electrical components common to air conditioning and refrigeration systems such as switches, relays, contactors, starter boxes, transformers, time delay relays, defrost timers, motors of various types, capacitors and motor starting relays will also be examined. Theory/Lab. Offered in the fall and spring semesters.
ACR 1206
ELECTRICAL CONTROL APPLICATIONS
Electrical components and circuits and how they relate to air conditioning and refrigeration systems form the basis for this course. Emphasis is on actual wiring and troubleshooting of basic circuits, with techniques for troubleshooting ‘live’ circuits with volt meters and amp meters practiced. Students will also gain experience designing and wiring circuits using common electrical components that were studied in ACR 1203. Theory/Lab. Prerequisite/Co-requisite: ACR 1203. Offered in the fall and spring semesters.

ACR 1336
RESIDENTIAL AIR CONDITIONING AND HEATING SYSTEMS
Individual projects examining residential air conditioning and heating systems with respect to: installation, operation, and servicing of split system equipment, package equipment, unitary equipment, gas heating electric heating, hydronic heating, and oil heating will be discussed and/or reviewed in the lab. Topics including R-22 and R-410A Systems will be discussed and analyzed. A strong emphasis is put on wiring diagrams, control circuits and troubleshooting. Theory/Lab. Prerequisite: ACR 1203, ACR 1206, ACR 1126. Offered in the summer semester.

ACR 1343
ELECTRONIC CONTROL APPLICATIONS
Solid state electronic controls, bridge-circuits and direct digital controls as applied to air conditioning and refrigeration. Emphasis is devoted to wiring and testing system components and control circuits. Theory/Lab. Prerequisites: ACR 1203, ACR 1206. Offered in the summer semester.

ACR 1344
UNITARY REFRIGERATION
Operation, diagnosis and service of unitary systems. Emphasis is devoted to ice makers, slush machines, ice cream units and their related controls. Theory/Lab. Prerequisites: ACR 1126, ACR 1203, ACR 1206. Offered in the fall semester.

ACR 2090 (1-9 CREDIT HOURS)
SPECIAL PROJECTS
Individual study may be arranged under the supervision of an instructor with credit hours to be designated. Projects may be undertaken in any area of air conditioning. Theory/Lab. Prerequisite: The Division Chair’s approval.

ACR 2406
COMMERCIAL REFRIGERATION APPLICATIONS
This course applies to the selection, calibration, servicing, installation, application and operation of commercial refrigeration systems and display cases. Also, included: adjustment of temperature, pressure, defrost controls, load calculations, pipe sizing and bidding procedures. Diagnosis and troubleshooting electrical and pressure operated devices are included. Theory/Lab. Prerequisites: ACR 1126, ACR 1343, ACR 1344. Offered in the spring semester.

ACR 2443
SYSTEMS CONTROLS
Topics in this course include the operation, calibration, and servicing of equipment with direct digital control systems. Systems with both dedicated and programmable controls will be covered. Special emphasis will be placed on checking inputs and outputs to individual control systems. Theory/Lab. Prerequisite: ACR 1343. Offered in the fall semester.

ACR 2513
AIR SYSTEMS DESIGN
Heat load calculations using ASHRAE data from Manual J for residential homes and duct layout and design using Manual D form the basis of this course on air systems design. Heat loads are calculated by use of forms and the computer. Theory/Lab. Offered in the fall and spring semester.

ACR 2603
COMMERCIAL AIR CONDITIONING
This course covers the operation, service and maintenance of commercial reciprocating, centrifugal and absorption chilled water systems. Also taught are commercial controls, starting systems and energy management. Theory/Lab. Prerequisites: ACR 1343, ACR 2806. Offered in the fall semester.

ACR 2616
AIR CONDITIONING AND REFRIGERATION CAPSTONE
The Air Conditioning and Refrigeration Capstone course will involve team projects to examine the installation, operation and service of home air conditioning units, heat pumps and control systems. It will also cover psychometrics, fans, air ducts, control wiring, circuit tracing and system diagnosis and laboratory experiences in servicing air conditioning and heating equipment. The course will include compilation of the Career Passport, exit assessments and other graduation requirements.
Theory/Lab. Prerequisites: ACR 2603, ACR 2806. Offered in the spring and summer semester.

ACR 2806
ACR INTERNSHIP I
This internship will be a supervised cooperative industry experience which allows students the opportunity to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines. Theory/Lab.
Prerequisites: Student must be in good academic standing having a minimum of a 2.0 G.P.A. and have completed: ACR 1126, ACR 1203, ACR 1206, ACR 1336.

ACR 2906
ACR INTERNSHIP II
This is the second internship, it will be a supervised cooperative industry experience which allows students the opportunity to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines. Theory/Lab.
Prerequisites: Student must be in good academic standing having a minimum of a 2.0 G.P.A. and have completed: ACR 1336, ACR 2806.

ACR 2912
INTERNSHIP (FALL SEMESTER)
This internship will be a supervised cooperative industry experience which allows students the opportunity to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines. Theory/Lab.
Prerequisites: Student must be in good academic standing having a minimum of a 2.0 G.P.A. and have completed: ACR 1126, ACR 1203, ACR 1206, ACR 1336.

AMERICAN SIGN LANGUAGE (ASL)

ASL 1363
AMERICAN SIGN LANGUAGE I
An introduction to ASL (American Sign Language) which will emphasize basic signs, alphabet, numbers, and culture of the d/Deaf (deaf and hard of hearing) as well as facial and body expressions. Theory.

ASL 1373
AMERICAN SIGN LANGUAGE II
A continuation of ASL (American Sign Language) which will continue to emphasize basic signs, alphabet, numbers, and culture of the d/Deaf (deaf and hard of hearing) as well as facial and body expressions. Theory. Prerequisite: ASL 1363 or approval of instructor.

AUTOMOTIVE COLLISION REPAIR (AUC)

Courses in each semester of the Collision Repair program are prerequisites for courses in the following semester according to the Collision Repair Plan of Study. Students should check with their Collision Repair faculty advisor for clarification on prerequisites.

AUC 1031
COLLISION COMPUTER BASED TRAINING
Theory/Application of the proper use of computerized collision estimating, non-structural, structural, and refinishing systems. Theory/Lab.

AUC 1032
SECTIONING WELDED PANELS
Theory/Application of the replacement of weld-on outer body panels. Emphasis is given to using proper removal, sectioning and welding procedures according to manufacturer and industry recommendations. Safety is stressed. Theory/Lab.

AUC 1062
REFINISHING PROCEDURES AND DETAILING
Theory/Application of the proper use of masking materials for priming, blending and overall refinishing and the proper detailing procedures and techniques used following the refinishing process. Safety is stressed. Theory/Lab.

AUC 1101
COLLISION CAREER CORNERSTONE
Through a theory/application approach, this Career Cornerstone experience emphasizes the variety of career opportunities available in the collision repair industry with a focus on career networking by communicating with industry professionals. Materials and activities designed to aid students in completing their Career Passport will be included in this course. Students will also be exposed to various styles of vehicle construction, common equipment used in the industry and sound safety practices. Theory/Lab.

AUC 1102
CHASSIS ANALYSIS
Theory/Application of the proper procedures used for measuring and analyzing unibody and frame structural damage is taught in this course. Emphasis is on the use of the manufacturer’s recommendations for correct anchoring techniques utilizing several types of anchoring attachments and a variety of pulling equipment as well as the
professional use of dimension books and computer measuring systems. Safety is stressed. Theory/Lab.

AUC 1111
VEHICLE DESIGN & ENERGY MANAGEMENT
Theory/Application of vehicle design and construction is taught in this course. Emphasis is on unitized, full frame and space frame construction. The physics of structural deformation will be featured including lateral and vertical deflection as it pertains to the three-section principle, emphasized by the collision repair industry. Safety is stressed. Theory/Lab.

AUC 1112
PANEL STRAIGHTENING & FILLER APPLICATION
Theory/Application of the use of common collision repair materials and processes related to panel straightening and filler application is taught. Emphasis is on metal, plastic and fiberglass repairs following correct procedures established by the collision repair industry. Safety is stressed. Theory/Lab.

AUC 1121
COLLISION ESTIMATING
Theory/Application of vehicle damage appraisals used in the collision industry. Collision estimating will involve the student technician in the areas of customer relations, listing replacement parts, and determining the cost of repairs for damaged components. Collision repair manuals and computerized estimating systems will be used according to industry standards. Theory/Lab.

AUC 1131
MECHANICAL & ELECTRICAL SERVICE & REPLACEMENT PROCEDURES
Theory/Application of electrical/electronic principles and concepts relating to collision repair, including the diagnosis and servicing of components and systems. Additionally, the inspection, diagnosis and servicing of mechanical components and systems will be emphasized. Safety is stressed. Theory/Lab.

AUC 1222
COLOR ANALYSIS
Theory/Application of collision repair refinishing problem-solving techniques is taught in this course. Emphasis is on solving refinishing problems as they affect the quality of the repair and shop production. Manufacturer and industry recommendations will be followed. Safety is stressed. Theory/Lab.

AUC 1232
GAS METAL ARC WELDING
Theory/Application of automotive welding techniques used in the collision repair industry is taught in this course. Emphasis is on proper welding operations using MIG and resistance spot welding according to industry recommendations. Safety is stressed. Theory/Lab.

AUC 1252
PANEL REPLACEMENT & ALIGNMENT
Theory/Application of procedures used to replace and align body panels is taught in this course. Emphasis is on the correct processes used in the removal and replacement of bolt-on body panels following industry recommendations. The proper alignment of panels as well as moveable glass, hardware and locking mechanisms is included. Safety is stressed. Theory/Lab.

AUC 1262
ADVANCED METAL REPAIR
Theory/Applications of procedures used to repair body lines, reverse curves, and combinations crown panels is taught in this course. Emphasis will be given to the complex shaping and leveling of various filler materials according to industry standards. Safety is stressed. Theory/Lab.

AUC 1302
SUSPENSION & ALIGNMENT FUNDAMENTALS
Theory/Application of proper procedures used in measuring and analyzing unibody and frame damage. Emphasis is on the initial repair and correction procedures which affect wheel alignment as well as overall structural alignment using specialized shop tools, stationary systems and above-floor systems, according to manufacturer and industry recommendations. Safety is stressed. Theory/Lab.

AUC 2101
STRUCTURAL ALIGNMENT PROCEDURES
Theory/Application of the analysis and repair procedures used to properly repair minor collision damage such as kick-up, sway, twist, short rail and diamond damage utilizing electronic measuring systems and above-floor
repair systems according to manufacturer and industry recommendations. Safety is stressed. Theory/Lab.

AUC 2131
NON-STRUCTURAL RECYCLED PANELS
Theory/Application of the proper use of recycled panels. Emphasis is on the proper removal and re-use of weld-on outer body panels according to industry recommendations. Safety is stressed. Theory/Lab.

AUC 2156
INTERNSHIP I
This internship course is a cooperative agreement between industry and education that allows student technicians to utilize and refine skills previously learned in their educational processes. All work is to be performed in accordance with industry standards and guidelines, and is supervised by industry and college representatives. Safety is stressed. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previous required core courses.

AUC 2161
ADVANCED REFINISHING PROCESSES I
Theory/Application of the proper production refinishing procedures used in single stage, base coat, clear coat, and tri-coat refinishing. Safety is stressed. Theory/Lab.

AUC 2201
STRUCTURAL REPLACEMENT PROCEDURES
Theory/Application of the analysis and replacement procedures used to replace front, center and rear structural components utilizing electronic and on-electric measuring systems according to manufacturer and industry recommendations. Safety is stressed. Theory Lab.

AUC 2211
COLLISION INDUSTRY UPDATES AND TRENDS
Theory/Application of updated vehicle technologies as they relate to collision repair as well as trends developing in the industry. Emphasis will be placed on Hybrid and alternative fuel vehicles, safety devices and systems, high strength steels and composites and other emerging technologies. Theory/Lab.

AUC 2231
PLASTIC REPAIR & PANEL BOND
Theory/Application of the proper procedures used to repair plastic bumper covers. Various manufacturers’ procedures will be covered. Panel bonding of outer body panels will be demonstrated and discussed. Safety is stressed. Theory/Lab.

AUC 2256
INTERNSHIP II
This internship course is a cooperative agreement between industry and education that allows student technicians to utilize and refine skills previously learned in their educational processes. All work is performed in accordance with industry standards and guidelines, and is supervised by industry and college representatives. Safety is stressed. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previous required core courses.

AUC 2261
ADVANCED REFINISHING PROCESSES II
Theory/Application of the proper production refinishing procedures used on flexible parts. Additionally, instruction will include proper application techniques used with waterborne products. Safety is stressed. Theory/Lab.

AUC 2356
INTERNSHIP III
This internship is a cooperative agreement between industry and education that allows student technicians to utilize and refine skills previously learned in their educational processes. All work is to be performed in accordance with industry standards and guidelines, and is supervised by industry and college representatives. Safety is stressed. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previous required core courses.

AUC 2401
BEGINNING INTERNSHIP I
This course will be a cooperative agreement between industry and education which allows the students to earn credit for the technology center Collision Repair program to count toward the Automotive Collision Repair Technology AAS degree program. All work is to be performed in accordance with the industry standards and will be supervised by technology center faculty. Theory/Lab.

AUC 2411
REFINISHING CAPSTONE
Theory/Application of refinishing repair and problem-solving techniques is taught in this course. Emphasis is on the student technician’s performance in the areas of color matching, applications of primers, sealers, topcoats, surface preparation of bare metal and painted surfaces. Student technicians will be provided the opportunity to update their skills in refinishing by attending update seminars and new information updates by manufacturers, when available. The Capstone course represents a
culmination of the program of study. Safety is stressed. Theory/Lab. Prerequisite: AUC 2403.

AUC 2415
ADVANCED INTERNSHIP I
This internship course is a cooperative agreement between industry and education that allows student technicians to utilize and refine refinishing skills previously learned in their educational processes. All work is to be performed in accordance with industry standards and guidelines, and is supervised by industry and college representatives. Safety is stressed. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previous required core courses.

AUC 2521
NON-STRUCTURAL CAPSTONE
Theory/application of non-structural collision repair problem-solving techniques is taught in this course. Emphasis is on the student technician’s performance of removal and replacement of outer body panels, panel sectioning, welding, and correct filler repair techniques following manufacturer’s and industry recommendations. Student technicians will be provided the opportunity to update their skills in non-structural repair by attending update seminars and new information updates by manufacturers, when available. The Capstone course represents a culmination of the program of study. Safety is stressed. Theory/Lab. Prerequisite: AUC 2513.

AUC 2631
STRUCTURAL CAPSTONE
Theory/application of structural collision repair problem-solving techniques is taught in this course. Emphasis is on the student technician’s performance of correct measuring and gauging procedures, completing a detail repair plan, implementing the steps in anchoring, structural welding, and correcting structural damage as it relates to vehicle manufacturers recommendations and industry standards. Student technicians will be provided the opportunity to update their skill information in non-structural repair by attending update seminars and new information updates by manufacturers, when available. The Capstone course represents a culmination of the program of study. Safety is stressed. Theory/Lab. Prerequisite: AUC 2623.

AUC 2641
BEGINNING INTERNSHIP III
This internship is a cooperative agreement between industry and education that allows student technicians to utilize and refine skills previously learned in their educational processes. All work is to be performed in accordance with industry standards and guidelines, and is supervised by industry and college representatives. Safety is stressed. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previous required core courses.

AUC 2645
ADVANCED INTERNSHIP III
This internship is a cooperative agreement between industry and education that allows student technicians to utilize and refine skills previously learned in their educational processes. All work is to be performed in accordance with industry standards and guidelines, and is supervised by industry and college representatives. Safety is stressed. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previous required core courses.

AUTOMOTIVE - MOPAR CAP (Chrysler) (AUMC)

AUMC 1361
TECHNOLOGY FUNDAMENTALS
A theoretical discussion and demonstration of vehicle components, systems operation, hand and power tool usage and precision measuring, service manual usage,
specialized equipment applications and shop safety are taught in this course. Theory/Lab.

AUMC 1411
ENGINE OPERATION
A theoretical demonstration and application of the principles of engine operation, including the identification of engine parts and component functions of the cooling, lubrication, fuel, ignition, emission, mechanical, electrical and electronic systems are taught in this course. Emphasis is given to diagnosis, failure analysis and service according to manufacturer’s specifications. Theory/Lab.

AUMC 1421
CAREER CORNERSTONE: INTRODUCTION TO CHRYSLER OPERATIONS
This course emphasizes a theoretical discussion of the evolution of the Chrysler Corporation which involves an examination of the relationship between Chrysler and its dealers and includes an examination of the dealership’s service and parts departments, including expectations of department personnel. The emphasis will be on career networking focusing on the variety of career opportunities within the automotive service industry. Included in this course are materials and activities designed to aid the student in the completion of his/her Career Passport, including exposure to experts in the automotive service industry. This course also covers the introduction to and proper use of Chrysler service manuals, warranty repairs and customer pay tickets. Master Tech Training and Right-to-Know are also discussed. Theory.

AUMC 1422
ENGINE REPAIR
A theoretical demonstration and application of engine repair procedures according to manufacturer’s specifications, including disassembly, cleaning, inspection, measurement, service and reassemble and R&R is taught in this course. Emphasis is given to system diagnosis and failure analysis and includes the proper use of hand tools, precision measurement devices and other specialized tools and equipment. Safety is stressed. Theory/Lab.

AUMC 1431
ELECTRICAL PRINCIPLES I
A theoretical demonstration and application of the operation and service of electrical systems leading to the introduction of electronic systems will be the focus of this course, including OHM’s Law, circuit construction and component testing. Emphasis is given to proper equipment usage and safety. Theory/Lab.

AUMC 1515
INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and is supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previous required core courses.

AUMC 1522
CHRYSLER ELECTRICAL SYSTEMS
A theoretical demonstration and application of electrical and electronic principles regarding Chrysler battery, starting, charging and ignition systems is taught with emphasis given to system diagnosis, failure analysis and service according to manufacturer’s specifications. Safety is stressed. Theory/Lab.

AUMC 1531
ELECTRICAL PRINCIPLES II
This course includes a theoretical demonstration and application of advanced electronic systems. The understanding of sensors and controllers that control electronic systems is the focus of the course, including diagnosis of electrical systems using the Diagnostic Readout Box, circuit construction and component testing. Emphasis is given to proper equipment usage and safety. Theory/Lab. Prerequisite: AUMC 1431.

AUMC 1541
CHRYSLER BODY ELECTRICAL SYSTEMS I
This course includes a theoretical demonstration and application of the operation, diagnosis and service of computer controlled electronic vehicle communications. The understanding, diagnosis, and repair of CCD, PCI, ISO-K, SWS, and CAN Bus systems is the focus of this course, including the use of special electronic diagnostic equipment. Emphasis is given to proper usage and safety. Theory/Lab. Prerequisites: AUMC 1431, AUMC 1531.

AUMC 1611
BRAKE SYSTEMS FUNDAMENTALS
A theoretical demonstration and application of component and system operation, function, adjustment, diagnosis and service will be taught in this course including principles of hydraulics and friction. Emphasis is given to preventive maintenance, system diagnosis and failure analysis. Safety is stressed. Theory/Lab.
AUMC 1612
CHRYSLER BRAKE SYSTEMS SERVICE

A theoretical demonstration and application of Chrysler brake system operation, diagnosis and service will be taught in this course including all electrical and electronic principles needed for diagnosis and service of anti-lock systems. Emphasis is given to system diagnosis and failure analysis and involves the use of specialized tools and equipment. Safety is stressed. Theory/Lab.

AUMC 1615
INTERNSHIP

This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed previous required core courses.

AUMC 1621
STEERING AND SUSPENSION SYSTEMS FUNDAMENTALS

A theoretical demonstration and application of component and system function, operation, adjustment, diagnosis and service will be taught in this course and includes principles of suspension geometry and alignment angles as well as the electrical and electronic principles needed for diagnosis and service of these systems. Emphasis is given to preventive maintenance, system diagnosis and failure analysis. Safety is stressed. Theory/Lab.

AUMC 1622
CHRYSLER STEERING AND SUSPENSION SYSTEMS SERVICE

A theoretical demonstration and application of Chrysler steering and suspension system operation, diagnosis and service will be taught in this course including electronic steering and suspension, CV joints, wheels and axles as related to noise, vibration and harshness. Also involved are the use of specialized tools and equipment. Proper vehicle lifting and supporting procedures and safety are stressed. Theory/Lab.

AUMC 1642
CHRYSLER BODY ELECTRICAL SYSTEMS II

A theoretical demonstration and application of electrical and electronic principles on Chrysler chassis and body accessories will be taught in this course. Including power assisted systems, windshield wipers, cruise control, lighting, warning devices, security controls, air bags, instruments and related components. Emphasis is given to system diagnosis and service as well as equipment usage according to manufacturer's specifications. Theory/Lab. Prerequisites: AUMC 1431, AUMC 1531.

AUMC 2115
INTERNSHIP

This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previous core courses.

AUMC 2121
AUTOMATIC TRANSMISSION FUNDAMENTALS

A theoretical demonstration and application of component and system operation, function, adjustment, diagnosis and service will be taught in this course including principles of hydraulics and friction. Also included are testing, minor service and rebuild with emphasis given to preventative maintenance, system diagnosis and failure analysis. Safety is stressed. Theory/Lab.

AUMC 2122
CHRYSLER AUTOMATIC TRANSMISSIONS

A theoretical demonstration and application of Chrysler automatic transmission/transaxle operation, diagnosis and service is presented in this course and also includes all electrical and electronic principles needed for diagnosis of electronically shifted transmissions/transaxles. Emphasis is given to system diagnosis and failure analysis and involves the use of specialized tools and equipment. Safety is stressed. Theory/Lab.

AUMC 2131
MANUAL TRANSMISSION FUNDAMENTALS

A theoretical demonstration and application of component and system operation, function, adjustment, diagnosis and service is presented and includes related driveline components. Emphasis is given to preventive maintenance, system diagnosis and failure analysis. Safety is stressed. Theory/Lab.

AUMC 2132
CHRYSLER MANUAL TRANSMISSIONS

A theoretical demonstration and application of Chrysler manual transmission/transaxle operation, diagnosis and service is contained within this course and includes related driveline components and systems. Emphasis is given to
preventive maintenance, system diagnosis and failure analysis and involves the use of specialized tools and equipment. Safety is stressed. Theory/Lab.

AUMC 2211
CHRYSLER EMISSION SYSTEMS SERVICE
A theoretical demonstration and application of Chrysler emission systems operation, diagnosis and service is taught in this course with emphasis given to preventive maintenance, system diagnosis and failure analysis. This course also involves the use of specialized tools and equipment and safety is stressed. Theory/Lab.

AUMC 2215
INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed previous core courses.

AUMC 2221
CLIMATE CONTROL FUNDAMENTALS
A theoretical demonstration and application of component and system operation, adjustment, diagnosis and service is taught in this course and includes common HVAC principles. Emphasis is given to preventive maintenance, system diagnosis and failure analysis. Safety is stressed. Theory/Lab.

AUMC 2231
CHRYSLER FUEL SYSTEMS SERVICE
A theoretical demonstration and application of Chrysler fuel systems operation, diagnosis and service is taught in this course, with emphasis given to preventive maintenance, system diagnosis and failure analysis. The course involves the use of specialized tools and equipment. Safety is stressed. Theory/Lab.

AUMC 2232
CHRYSLER CLIMATE CONTROL
A theoretical demonstration and application of Chrysler climate control systems operation, diagnosis and service will be taught in this course and includes automatic temperature controls. Emphasis is given to preventive maintenance, system diagnosis and failure analysis and involves the use of specialized tools and equipment. Safety is stressed. Theory/Lab.

AUMC 2315
INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed previous core courses.

AUMC 2321
CHRYSLER ENGINE PERFORMANCE
A theoretical demonstration and application of Chrysler engine performance systems operation, diagnosis and service will be the focus of this course, with emphasis given to preventive maintenance, system diagnosis and failure analysis. The course involves the use of specialized tools and equipment. Safety is stressed. Theory/Lab.

AUMC 2344
MOPAR CORNERSTONE
The Capstone course is designed to allow students to utilize and refine skills previously learned in the educational process. Included in this course is a theoretical demonstration and application of Chrysler diagnosis and service procedures on systems affecting drivability, including ignition system diagnosis and service and Chrysler’s second generation on-board diagnostics (OBDI) with special emphasis given to understanding and following guidelines set by the Federal Clean Air Act and C.A.R.B. Regulations. Students will complete the Career Passport and exit assessment instruments. This course also involves the use of special service tools and information. Theory/Lab.

AUMC 2392
DIESEL FUEL INJECTION SYSTEMS SERVICE
A theoretical demonstration and application of Chrysler diesel fuel injection systems operation, diagnosis and service will be included in this course, as well as, the use of special tools, equipment and service information. Safety is stressed. Theory/Lab.
AUTOMOTIVE – FORD ASSET (AUMF)

AUMF 1011
CAREER CORNERSTONE: INTRODUCTION TO AUTOMOTIVE SERVICE
This course will be an overview of the automotive field with detailed specifics focused on Ford Motor Company and includes historical information, understanding how the dealership functions, efficiency, productivity, time and labor guide usage, VIN codes, service manual usage, introduction to scan tool devices, predelivery inspection, precision measurement usage and safety. Its emphasis will be on career networking focusing on the variety of related career opportunities within the automotive service industry. Theory/Lab.

AUMF 1033
FORD BASIC ELECTRICAL
The theory and application of electrical principles and concepts will be the focus for this course. Subjects covered will include proper use of digital multimeters, OHM’s Law, series circuits, parallel circuits and series parallel circuits. Emphasis is placed on diagnostic procedures through on-bench and practical exercises using automotive applications. Theory/Lab.

AUMF 1103
INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed required AUMF core courses. Lab.

AUMF 1111
FORD COMPUTER BASED TRAINING
This course is designed to be a self paced, self study opportunity for the student to complete Ford Multimedia Training (FMT) units as required by Ford Motor Company for Ford Service Department Certification. The FMT units completed by the student in this course will match the Ford coursework being taught in the same semester. Lab.

AUMF 1113
FORD ENGINE REPAIR
Theory, demonstration and Lab work covering the operation and principles of two and four stroke engines and engine systems will be taught in this course, including the identification of engine parts, diagnosis and service of the cooling, fuel (gas and diesel), lubrication, ignition, diesel fuel injection and valve-train systems, with special emphasis on cylinder head service. The operation and service of turbo-chargers and super-chargers will also be covered as they pertain to Ford vehicles. Included in this course is the diagnosis of common engine noises. Theory/Lab.

AUMF 1203
INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have completed required AUMF core courses. Lab.

AUMF 1211
FORD COMPUTER BASED TRAINING
This course is designed to be a self paced, self study opportunity for the student to complete Ford Multimedia Training (FMT) units as required by Ford Motor Company for Ford Service Department Certification. The FMT units completed by the student in this course will match the Ford coursework being taught in the same semester. Lab.

AUMF 1233
FORD BASE AND ELECTRICAL SUSPENSION AND STEERING
The theory and application of component and system, function, operation, adjustment, diagnosis and repair of suspension and steering systems used on current Ford cars and light trucks will be taught in this course and includes principles of suspension, geometry, alignment angles, electronic suspension and steering, CV joints, and wheel and axle bearings. Emphasis is on preventive maintenance, system diagnosis and failure analysis and also includes electrical and electronic principles needed for diagnosis and repair of these systems. It involves operation of wheel balancers and alignment machines as well as other special shop tools, equipment and Ford diagnostic testers. Proper automobile lifting and support procedures and shop safety are stressed. Theory/Lab.

AUMF 1243
FORD ELECTRONIC SYSTEM DIAGNOSIS
The theory and application of semiconductor devices, batteries, starting systems and service manual usage will be taught in this course. Subjects covered will include diode, transistors, micro-processor and basic automotive
systems. Emphasis is placed on diagnostic procedures through on-bench and practical exercises using automotive applications. Theory/Lab.

AUMF 1303
INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have completed required AUMF core courses. Lab.

AUMF 1311
FORD COMPUTER BASED TRAINING
This course is designed to be a self-paced, self-study opportunity for the student to complete Ford Multimedia Training (FMT) units as required by Ford Motor Company for Ford Service Department Certification. The FMT units completed by the student in this course will match the Ford coursework being taught in the same semester. Lab.

AUMF 1353
FORD ENGINE PERFORMANCE THEORY & OPERATION
The theory and application of Ford electronic and computer control of engine, body and chassis systems will be taught in this course. Detailed examinations of various sensing and controlling devices used in Ford electronic systems are included, particularly as they relate to overall engine performance. Theory/Lab.

AUMF 1363
FORD MANUAL TRANS/TRANSAXLE & DRIVELINE REPAIR
A theoretical demonstration and application of Ford manual transmissions/transaxles and other drive train components will be taught in this course. Also included are component and system operation as well as overhaul and service procedures on clutches, manual transmissions/transaxles, differentials and NVH diagnosis and repair. Electronic testing of electrical/electronic shifting controls is included. Theory/Lab.

AUMF 2103
INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have completed required AUMF core courses.

AUMF 2203
INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have completed required AUMF core courses.

AUMF 2411
FORD COMPUTER BASED TRAINING
This course is designed to be a self-paced, self-study opportunity for the student to complete Ford Multimedia Training (FMT) units as required by Ford Motor Company for Ford Service Department Certification. The FMT units completed by the student in this course will match the Ford coursework being taught in the same semester. Lab.

AUMF 2453
FORD ENGINE PERFORMANCE DIAGNOSIS & TESTING
The theory and application of Ford electronic and computer control will be taught in this course. Included is the study of multiplexing with further diagnosis and testing using Ford's Integrated Diagnostic System (IDS) in relationship to improved engine performance. Theory/Lab.

AUMF 2473
FORD BRAKE SYSTEMS & ADVANCED BRAKE DIAGNOSIS
A theoretical demonstration and application of Ford brake system operation, diagnosis and service will be taught in this course including principles of hydraulics. Service and repair of Ford ABS including electrical and electronic principles needed for diagnosis and repair of anti-lock brake and traction control systems will also be taught. General shop safety is stressed. Theory/Lab.

AUMF 2511
FORD COMPUTER BASED TRAINING
This course is designed to be a self paced, self study opportunity for the student to complete Ford Multimedia Training (FMT) units as required by Ford Motor Company for Ford Service Department Certification. The FMT units
completed by the student in this course will match the Ford coursework being taught in the same semester. Lab.

AUMF 2533
FORD DIESEL ENGINE PERFORMANCE DIAGNOSIS
A theoretical demonstration and application of Ford diesel engine terminology, operating principles and maintenance. Ford direct injection fuel system diagnostics, repair, and maintenance procedures will be taught. Students will use performance flow charts and specific diagnostic procedures to evaluate engine condition and performance. Use of electronic service publications will be emphasized. General shop safety is stressed. Theory/Lab.

AUMF 2573
FORD TRANSFER CASE/4WD DIAGNOSIS & SYSTEM REPAIR
The theory and application of Ford drivetrain components will be taught in this course. This will include system operation and overhaul/service procedures on transfer cases and 4WD front hubs. Also included are testing of electronic shifting controls and NVH diagnosis and repair. Safety is stressed. Theory/Lab.

AUMF 2611
FORD COMPUTER BASED TRAINING
This course is designed to be a self-paced, self-study opportunity for the student to complete Ford Multimedia Training (FMT) units as required by Ford Motor Company for Ford Service Department Certification. The FMT units completed by the student in this course will match the Ford coursework being taught in the same semester. Lab.

AUMF 2613
FORD AUTOMATIC TRANSMISSION REPAIR & ELECTRICAL
The theory and application of Ford automatic transmissions and transaxles will be taught in this course which includes the principles of planetary gearsets and ALT power flow hydraulics. The diagnosis, testing and total overhaul of all current Ford car and light truck automatic transmissions and transaxles are covered, including the service of electrical/electronic ‘E’ class transmissions and transaxles. Safety is stressed. Theory/Lab.

AUMF 2683
FORD CAPSTONE
The Capstone course is designed to allow students to utilize and refine skills previously learned in their educational process. Students will complete the Career Passport and exit assessment instruments. Theory/Lab.

AUMF 2693
FORD CLIMATE CONTROL
The theory and application of heating/air conditioning systems found on Ford automobiles and light trucks will be taught in this course. Principles of refrigeration, air flow, heating and various climate control components operations are also covered. The inspection, testing, servicing and diagnosis of climate control system components, as well as automatic temperature control systems are emphasized. Safety is stressed. Theory/Lab.

AUTOMOTIVE - GENERAL MOTORS ASEP (AUMG)

AUMG 1062
COLLEGE & CAREER CORNERSTONE: INTRODUCTION TO GM AUTOMOTIVE SERVICE
This course serves as the foundation for students to build upon during their time at OSU Institute of Technology. It is an introduction to basic dealership operations, service literature/information, parts supply procedures, shop safety, hand and power tool usage, automotive measuring devices and systems including precision instruments, metric and decimal systems and program orientation. Additionally, in order to support successful departmental learning activities, students must document, defend, and demonstrate the ability to perform tasks required to meet the objectives of units including email proficiency, library research, resource tools, learning styles and study strategies, and time and money management. Theory/Lab.

AUMG 1122
GM AUTOMOTIVE ENGINES I
The theory, demonstration and application of engine repair procedures according to manufacturer’s specification will be taught in this course, which includes disassembly, cleaning, inspection, measurement, service and reassembly and R&R. Emphasis is given to system diagnosis and failure analysis and includes the proper use of hand tools, precision measurement devices and other specialized equipment. Safety is stressed. GM course #16009-19 4.3L Central Port Fuel Injection is included. Theory/Lab.

AUMG 1132
GM AUTOMOTIVE ENGINES II
The theory, demonstration and application of the principles of engine operation will be taught in this course, which includes the identification of engine parts and component functions of the cooling, lubrication, fuel, ignition, emission, mechanical, electrical and electronic systems. Emphasis is
given to diagnosis, failure analysis and service according to manufacturer’s specifications. Theory/Lab.

AUMG 1142
GM AUTOMOTIVE BRAKE SYSTEMS I
This course will be an introduction into the theory and application of conventional automotive brake systems as well as an introduction to anti-lock systems. It includes an overview, discussion and hands-on activities with the various components and vehicles that make up the brake systems used in today’s GM automobiles. Theory/Lab.

AUMG 1152
GM AUTOMOTIVE BRAKE SYSTEMS II
The theory and application of the operation and repair of anti-lock brake systems and traction control systems used in GM vehicles will be taught in this course with emphasis given to preventive maintenance, system diagnosis, failure analysis and proper service procedures. It includes the discussion and operation of specialized shop tools and equipment. Shop safety is stressed. Theory/Lab.

AUMG 1162
GM SPECIALIZED ELECTRONICS TRAINING I
The theory and application of electrical principles and concepts will be the focus for this course. Subjects covered will include proper use of digital multimeters, OHM’s Law, series circuits, parallel circuits and series parallel circuits. Emphasis is placed on diagnostic procedures through on-bench and practical exercises using automotive applications. Theory/Lab.

AUMG 1172
GM SPECIALIZED ELECTRONICS TRAINING II
The theory and application of semiconductor devices, batteries, starting systems and service manual usage will be taught in this course. Subjects covered will include diode, transistor, microprocessor and basic automotive system. Emphasis is placed on diagnostic procedures through on-bench and practical exercises using automotive applications. Theory/Lab.

AUMG 1214
INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previous required core courses.

AUMG 1272
GM MANUAL DRIVETRAIN I
This course will be an introduction to the theory and application of manual transmissions/transaxles, helical gearset operation, planetary gearset operation and powerflow. It includes an overview, discussion and hands-on diagnosis and repair of various manual transmissions and transaxles. Theory/Lab.

AUMG 1292
GM STEERING AND SUSPENSION I
The theory, demonstration and application of component and system function, operation, adjustment, diagnosis and service will be taught in this course, which includes principles of suspension geometry and alignment angles. Emphasis is given to preventive maintenance, system diagnosis and failure analysis. Safety is stressed. Theory/Lab.

AUMG 1302
GM AUTOMOTIVE ELECTRICAL SYSTEMS I
The theory and application of batteries, starting and charging systems used on GM vehicles will be taught in this course which includes battery testing service and diagnosis; and starting system testing, diagnosis and service. Emphasis will be on system operation, proper test equipment usage and diagnostic and safety procedures. Theory/Lab.

AUMG 1312
GM MANUAL DRIVETRAIN II
This course will include a detailed look and interaction with the manual drivetrain field both in theory and application. The focus will be on the diagnosis and repair of final drives, differentials, driveline, 4-wheel drive systems and vibration analysis. Emphasis is given to preventive maintenance, system diagnosis, failure analysis and proper service procedures and includes the discussion and operation of specialized shop tools and equipment. Shop safety is stressed. Theory/Lab.

AUMG 1314
INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previously required AUMG core courses.
AUMG 1322
GM STEERING AND SUSPENSION II
The theory, demonstration and application of GM steering and suspension system operation, diagnosis and service will be taught in this course and includes electronic steering and suspension, CV joint wheels, tires and axles related to noise, vibration and harshness. The use of specialized tools and equipment, proper vehicle lifting and supporting procedures are involved and the latest product considerations are discussed. Safety is stressed. Theory/Lab.

AUMG 1342
GM AUTOMOTIVE ELECTRICAL SYSTEMS II
The theory and application of advanced auto electricity will be taught in this course which covers the theory, testing, diagnosis and repair of body electrical accessories including electrical windows, power seats, windshield wipers, cruise controls, audio systems and computer controlled body electronics. Theory/Lab.

AUMG 2522
GM AUTOMATIC TRANSMISSIONS & TRANSAXLES I
This course will be an introduction into the theory and application of automatic transmissions and transaxles and includes an overview discussion and hands-on activities with the various components that make up the automatic transmission, how they function and the logical process to diagnose a malfunction. Theory/Lab.

AUMG 2532
GM AUTOMOTIVE HEATING & AIR CONDITIONING I
The theory, demonstration and application of components and system operation, adjustment, diagnosis and service will be taught in this course which includes common HVAC principles and service. Emphasis is given to preventive maintenance, system diagnosis and failure analysis. Safety is stressed. Theory/Lab.

AUMG 1322
GM AUTOMOTIVE ENGINE PERFORMANCE
The theory and application on GM electronic engines controls will be taught in this course. Subjects include tune up, electronic carburetors, throttle body and multiple injection systems, turbo chargers, electronic and computer controlled ignition systems, charging systems and unlinking systems. Emphasis is on diagnosis, adjustments and repair procedures using electrical meters, scopes and infrared diagnostic equipment. Theory/Lab.

AUMG 2632
GM AUTOMATIC TRANSMISSIONS & TRANSAXLES II
This course includes interactive diagnosis, disassembly, component inspection, failure analysis, reassembly and dynamometer testing of rear wheel drive and front wheel drive transmissions/transaxles. Strong emphasis is placed on the diagnosis of and scan tool operation on computer controlled transmissions and transaxles. The proper use of transmission specialty tools and shop procedures as well as safety are emphasized. Theory/Lab.

AUMG 2582
GM AUTOMOTIVE HEATING & AIR CONDITIONING II
The theory, demonstration and application of GM climate control systems operation, diagnosis and service will be taught in this course, which also includes automatic temperature controls. Emphasis is given to preventive maintenance, system diagnosis and failure analysis and involves the use of specialized tools and equipment. Safety is stressed. Theory/Lab.

AUMG 2812
INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previous required AUMG core courses.
Student must be in good academic standing and have successfully completed all previous required AUMG core courses.

AUTOMOTIVE - PRO-TECH (AUMP)

AUMP 1031
CAREER AND COLLEGE CORNERSTONE
A theory and demonstration of basic vehicle components and operation, independent service center operations and procedures are taught in this course, including service literature, parts supply procedures, shop safety, hand and power tool usage, automotive measuring devices and systems including precision instruments, metric and decimal systems and program orientation. Emphasis will be on career networking focusing on the variety of related career opportunities within the automotive service industry. Included in this course are materials and activities designed to aid the student in completing his/her Career Passport, including exposure to experts in the automotive service industry. Theory.

AUMP 1051
AUTOMOTIVE ENGINES I
The theory, demonstration and application of engine repair procedures according to manufacturer’s specification will be taught in this course, which includes disassembly, cleaning, inspection, measurement, service and reassembly and R&R. Emphasis is given to system diagnosis and failure analysis including the proper use of hand tools, precision measurement devices and other specialized equipment. Safety is stressed. Theory/Lab.

AUMP 1052
AUTOMOTIVE ENGINES II
The theory, demonstration and application of the principles of engine operation will be taught in this course, which includes the identification of engine parts and component functions of the cooling, lubrication, fuel, ignition, emission, mechanical, electrical and electronic systems. Emphasis is given to diagnosis, failure analysis and service according to manufacturer’s specifications. Theory/Lab.

AUMP 1055
INTERNSHIP I
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previous required core courses.

AUMP 1072
ELECTRICAL/ELECTRONICS TRAINING I
The theory and application of electrical principles and concepts will be the focus for this course. Subjects covered will include proper use of digital multimeters, OHM’s Law, series circuits, parallel circuits and series parallel circuits. Emphasis is placed on diagnostic procedures through on-bench and practical exercises using automotive applications. Theory/Lab.

AUMP 1082
ELECTRICAL/ELECTRONICS TRAINING II
The theory and application of semiconductor devices, batteries, starting systems and service manual usage will be taught in this course. Subjects covered will include diode, transistors, microprocessor and basic automotive system. Emphasis is placed on diagnostic procedures through on-bench and practical exercises using automotive applications. Theory/Lab.

AUMP 1202
ELECTRICAL DIAGNOSIS
This course will emphasize hands on learning in the areas of electrical diagnosis, diagnostic procedures, information retrieval, component accessibility and diagnostic equipment usage. Lab.

AUMP 1231
AUTOMOTIVE BRAKE SYSTEMS I
This course will be an introduction into the theory and application of conventional automotive brake systems as well as an introduction to anti-lock systems. It includes an overview, discussion and hands-on activities with the various components and vehicles that make up the brake systems used in today’s automobiles. Theory/Lab.

AUMP 1242
AUTOMOTIVE BRAKE SYSTEMS II
The theory and application of the operation and repair of anti-lock brake systems and traction control systems used in vehicles will be taught in this course with emphasis given to preventive maintenance, system diagnosis, failure analysis and proper service procedures. It includes the discussion and operation of specialized shop tools and equipment. Shop safety is stressed. Theory/Lab.

AUMP 1281
AUTOMOTIVE SUSPENSION & STEERING I
The theory, demonstration and application of component...
and system function, operation, adjustment, diagnosis and service will be taught in this course including principles of suspension geometry and alignment angles. Emphasis is given to preventive maintenance, system diagnosis and failure analysis. Safety is stressed. Theory/Lab.

AUMP 1282
AUTOMOTIVE SUSPENSION & STEERING II
The theory, demonstration and application of component and system function, operation, adjustment, diagnosis and service will be taught in this course including principles of suspension geometry and alignment angles. Emphasis is given to preventive maintenance, system diagnosis and failure analysis. Safety is stressed. Theory/Lab.

AUMP 1285
INTERNSHIP II
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previously required AUMP core courses.

AUMP 1371
AUTOMOTIVE MANUAL DRIVETRAIN I
This course will be an introduction to the theory and application of manual transmissions/transaxles, helical gearset operation, planetary gearset operation and powerflow. It includes an overview, discussion and hands-on diagnosis and repair of various manual transmissions and transaxles. Theory/Lab.

AUMP 1372
AUTOMOTIVE MANUAL DRIVETRAIN II
This course will include a detailed look and interaction with the manual drivetrain field both in theory and application. The focus will be on the diagnosis and repair of final drives, differentials, driveline, 4-wheel drive systems and vibration analysis. Emphasis is given to preventive maintenance, system diagnosis, failure analysis and proper service procedures and includes the discussion and operation of specialized shop tools and equipment. Shop safety is stressed. Theory/Lab.

AUMP 1391
AUTOMOTIVE AUTOMATIC TRANSMISSIONS & TRANSAXLES I
This course will be an introduction into the theory and application of automatic transmissions and transaxles and will include an overview discussion and hands-on activities with the various components that make up the automatic transmission, how they function and the logical process to diagnose a malfunction. Theory/Lab.

AUMP 1392
AUTOMOTIVE AUTOMATIC TRANSMISSIONS & TRANSAXLES II
This course will include interactive diagnosis, disassembly, component inspection, failure analysis, reassembly and dynamo-meter testing of rear wheel drive and front wheel drive transmissions/transaxles. Strong emphasis is placed on the diagnosis of and scan tool operation on computer controlled transmissions and transaxles. The proper use of transmission specialty tools and shop procedures as well as safety are emphasized. Theory/Lab.

AUMP 1395
INTERNSHIP III
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previous required AUMP core courses.

AUMP 1901
INTERNSHIP I
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their education process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. This internship course is for students entering OSU Institute of Technology with Cooperative Alliance Automotive Service Technology course credit. Lab.

AUMP 1904
ELECTRICAL/ELECTRONIC SKILLS
An introduction to the theory and application of electrical principles and concepts will be the focus of this course. Subjects covered include proper use of digital multimeters, Ohm’s Law, series circuits, parallel circuits, series-parallel circuits, diodes, transistors, microprocessors and basic automotive electronic systems. Emphasis is placed on diagnostic procedures through on-bench and practical exercises using automotive applications. Theory/Lab.
AUMP 1912
BRAKE SKILLS I
(This course is a part of a Cooperative Alliance Agreement with technology centers and is not offered on the OSU Institute of Technology campus.)
This course will be an introduction into the theory and application of conventional automotive brake systems as well as an introduction to anti-lock systems. It includes an overview, discussion and hands-on activities with the various components and vehicles that make up the break systems used in today’s automobiles. Theory/Lab.

AUMP 1913
INTERNSHIP II
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their education process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. This internship course is for students entering OSU Institute of Technology with Cooperative Alliance Automotive Service Technology course credit. Lab.

AUMP 1922
BRAKE SKILLS II
(This course is a part of a Cooperative Alliance Agreement with technology centers and is not offered on the OSU Institute of Technology campus.)
The theory and application of the operation and repair of anti-lock brake systems and traction control systems used in vehicles will be taught in this course with emphasis given to preventive maintenance, system diagnosis, failure analysis and proper service procedures. It includes the discussion and operation of specialized shop tools and equipment. Theory/Lab.

AUMP 1923
INTERNSHIP IV
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their education process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. This internship course is for students entering OSU Institute of Technology with Cooperative Alliance Automotive Service Technology course credit. Lab.

AUMP 1941
INTERNSHIP V
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their education process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. This internship course is for students entering OSU Institute of Technology with Cooperative Alliance Automotive Service Technology course credit. Lab.

AUMP 1944
ENGINE PERFORMANCE SKILLS
(This course is a part of a Cooperative Alliance Agreement with technology centers and is not offered on the OSU Institute of Technology campus.)
The theory of application of electronic engine control will be taught in this course. Subjects will include tune-ups, electronic carburetors, throttle body and multiple injection systems, turbo chargers, electronic and computer controlled ignition systems, charging systems and unlinking systems. Emphasis is on diagnosis, adjustments and repair procedures using electrical meters, scopes and infrared diagnostic equipment. Also, the theory and application of electronic engine controls as they apply to OBD II systems will be taught in this course. Advanced theory on electronic fuel systems with further diagnosis and testing using scan
tools and advanced use of lab scopes and specialized testing equipment will be emphasized. Theory/Lab.

AUMP 2471
AUTOMOTIVE ENGINE PERFORMANCE I
The theory and application of electronic engine control will be taught in this course. Subjects will include tune ups, electronic carburetors, throttle body and multiple injection systems, turbo chargers, electronic and computer controlled ignition systems, charging systems and unlinking systems. Emphasis is on diagnosis, adjustments and repair procedures using electrical meters, scopes and infrared diagnostic equipment. Theory/Lab.

AUMP 2472
AUTOMOTIVE ENGINE PERFORMANCE II
The theory and application of electronic engines controls as they apply to OBD II systems will be taught in this course. Advanced theory on electronic fuel systems with further diagnosis and testing using scan tools and advanced use of lab scopes and specialized testing equipment will be emphasized. Theory/Lab.

AUMP 2475
INTERNSHIP IV
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previous required AUMP core courses.

AUMP 2591
AUTOMOTIVE HEATING & AIR CONDITIONING I
The theory, demonstration and application of components and system operation, adjustment, diagnosis and service will be taught in this course which includes common HVAC principles and service. Emphasis is given to preventive maintenance, system diagnosis and failure analysis. Safety is stressed. Theory/Lab.

AUMP 2592
AUTOMOTIVE HEATING & AIR CONDITIONING II
The theory, demonstration and application of climate control systems operation, diagnosis and service will be taught in this course, which also includes automatic temperature controls. Emphasis is given to preventive maintenance, system diagnosis and failure analysis and involves the use of specialized tools and equipment. Safety is stressed. Theory/Lab.

AUMP 2595
INTERNSHIP V
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all previous required AUMP core courses.

AUMP 2694
AUTOMOTIVE CAPSTONE
This course is designed to allow students to utilize and refine skills previously learned in the educational process. Included in this course are the diagnosis and servicing of electronically controlled systems found on today's vehicles as well as the proper use of special tools and information used to make repairs to industry standards. The Capstone course will include discussion of student goals and duties specific to the industry and specific competencies demonstrated during the course. Students will complete the Career Passport, post tests and exit assessments. Theory/Lab.

AUMP 2782
ADVANCED AUTOMOTIVE DIAGNOSTICS
The theory and application of electronic engine control as they apply to OBD II systems will be taught in this course. Advanced theory on electronic fuel systems with further diagnosis and testing using scan tools and advanced use of lab scopes and specialized testing equipment will be emphasized. Theory/Lab.

BUSINESS ADMINISTRATION (BADM)

BADM 1113
INTRODUCTION TO BUSINESS
This introductory business course acquaints students with the U.S. business system, including areas of management, organization, human resources, marketing, finance, and ethics in the global economy. Theory. Note: available online.

BADM 2063
BUSINESS LAW I
Business Law I introduces students to the law and enforcement agencies. It includes business law for
contracts, agencies, employment, personal property and bailments. Theory.

BADM 2153
MARKETING PRINCIPLES
The marketing principles course examines the methods and principles used by professional marketing executives. Careers in marketing and business administration and how they relate to the business environment will be examined. Theory.

BADM 2232
ENTERPRISE DEVELOPMENT BUSINESS CAPSTONE
This course is a study of applied problems that are of particular interest to the business environment. Theory.

BADM 2323
MICROCOMPUTER ACCOUNTING APPLICATIONS
This course is a study of small computer application packages using microcomputers. The course includes packages for general ledger, accounts receivable, accounts payable, billing, payroll, inventory control and fixed assets. Theory.

BADM 2373
BUSINESS COMMUNICATIONS
This course emphasizes composition and preparation of written business communications. Elements of cultural diversity, proofreading and listening skills are also addressed. Theory/Lab.

BADM 2513
PRINCIPLES OF FINANCE
This course uses a practical problem solving approach to planning, making investments and financial decisions for the business concern. Focus is on the United States financial system and securities market, time value of money, valuation capital, capital investment decisions and optimum capital structure. Theory. Prerequisite: ACCT 2203 or Division Chair approval.

BADM 2903
BUSINESS/OCCUPATIONAL INTERN
Students will work in a supervised business environment performing live assignments. Students will be required to schedule, complete, and interview with workplace supervisor prior to the intern experience.

BIOLOGY (BIOL)

BIOL 1014 (L, N)
GENERAL BIOLOGY. (NON-MAJORS)
An introduction to various topics in biological science including basic chemistry, cellular biology, studies of animals, plants, protist, and fungi, human biology, genetics and heredity, and environmental/population studies. Theory/Lab. Note: Available online.

BIOL 1114 (L, N)
GENERAL BIOLOGY
This course involves biological principles, population, man and the environment. Genetics, reproduction, development, concepts of evolution, selection, adaptation, speciation, taxonomy, and various concepts involving ecosystems are studied. Theory/Lab.

BIOL 1404 (N)
GENERAL BOTANY
Morphology and anatomy of plants. Plant functioning: photosynthesis, water relations, translocation, hormonal regulations, photoperiodism. Survey of the plant division, algae and fungi. Lab. Prerequisite: BIOL 1114 or Division Chair approval.

BIOL 1604 (N)
ZOOLOGY
Morphology, physiology, ecology, embryological development behavior, life histories and importance to man of representatives of major groups. Evolution of systems and mechanisms which have allowed animals to survive and adapt to diverse habitats. Theory/Lab. Prerequisite: BIOL 1114 or Division Chair approval.

BIOL 2104 (L, N)
HUMAN ANATOMY
Human Anatomy involves an introductory study of the human body’s structure and function with the emphasis on anatomical principles. Topics of study will begin at the cellular level and follow development through the major organ system. Theory/Lab. Prerequisite: BIOL 1114 or Division Chair approval.

BIOL 2114 (L, N)
HUMAN PHYSIOLOGY
Human physiology involves an introductory study of the integrative nature of physiology and the cooperative function of multiple body systems while maintaining homeostasis. This course will integrate physiology with the cellular and molecular levels of biology. Theory/Lab.
Prerequisite: CHEM 1314 (BIOL 1114 preferred, but not required) or Division Chair approval.

BIOL 2124 (L, N)
GENERAL MICROBIOLOGY
This is an introductory course in the fundamentals of microbiology, including a selection of representative microorganisms, microbial control and the importance of microorganisms to people. This is a laboratory concerned with techniques of observation and control of microorganisms. Theory/Lab. Prerequisites: BIOL 1114 or equivalent, CHEM 1314 or equivalent, or Division Chair approval.

BUILDING CONSTRUCTION (BLD)

BLD 1503
CONSTRUCTION EXPERIENCE AND/OR TRADE SKILLS EDUCATION I
(This course is a part of a Cooperative Alliance Agreement with technology centers and is not offered on the OSU Institute of Technology campus.)
This course will be a cooperative agreement between industry and education which allows the students to utilize Construction Life Experience and/or Trade Specific Education skills in carpentry, electrical, masonry, mechanical and plumbing as it relates to the Construction Technologies Division. All work is to be performed in accordance with the industry standards and will be supervised by construction contractors or career technology centers’ representatives. Theory/Lab.

BLD 1603
CONSTRUCTION EXPERIENCE AND/OR TRADE SKILLS EDUCATION II
(This course is a part of a Cooperative Alliance Agreement with technology centers and is not offered on the OSU Institute of Technology campus.)
This course will be a cooperative agreement between industry and education which allows the students to utilize Construction Life Experience and/or Trade Specific Education Skills in carpentry, electrical, masonry, mechanical and plumbing as it relates to the Construction Technologies Division. All work is to be performed in accordance with the industry standards and will be supervised by construction contractors or Career Technology Centers’ representatives. Theory/Lab.

BLD 1703
CONSTRUCTION EXPERIENCE AND/OR TRADE SKILLS EDUCATION III
(This course is a part of a Cooperative Alliance Agreement with technology centers and is not offered on the OSU Institute of Technology campus.)
This course will be a cooperative agreement between industry and education which allows the students to utilize either Construction Life Experience and/or Trade Specific Education skills in carpentry, electrical, masonry, mechanical and plumbing as it relates to the Construction Technologies Division. All work is to be performed in accordance with the industry standards and will be supervised by construction contractors or career technology centers’ representatives. Theory/Lab.

BLD 1803
CONSTRUCTION EXPERIENCE AND/OR TRADE SKILLS EDUCATION IV
(This course is a part of a Cooperative Alliance Agreement with technology centers and is not offered on the OSU Institute of Technology campus.)
This course will be a cooperative agreement between industry and education which allows the students to utilize either Construction Life Experience and/or Trade Specific Education skills in carpentry, electrical, masonry, mechanical and plumbing as it relates to the Construction Technologies Division. All work is to be performed in accordance with the industry standards and will be supervised by construction contractors or career technology centers’ representatives. Theory/Lab.

BLD 1803 (1-9 CREDIT HOURS)
SPECIAL PROJECTS
Individual study under the supervision of an instructor may be arranged with credit hours to be determined. Projects may be undertaken in any area of the building construction field. Theory/Lab. Prerequisite: The Division Chair’s approval.

BLD 2303
ESTIMATING II
Extensive use will be made of contract documents for quantity take off, pricing and bid preparation. Students will also learn the development of unit labor and material prices, output and production, methods of approximate estimating and how subcontractors and material suppliers bid and give quotations. Theory/Lab. Prerequisite: CNS 1303 AND CS 1013. Offered in the fall semester.

BLD 2423
BUILDING CODES
Construction Building Codes using the B.O.C.A. standards as the text will be examined and applied to construction projects. Theory.
BLD 2503 WALL AND ROOF SYSTEMS
Techniques of exterior and interior wall construction, including structural steel framing, metal buildings, wood masonry and other wall systems will be covered in this course. Other specific roof systems will include steel joist, metal deck, wood trusses, tee-slabs, roof insulation, built-up roofing, shingles and metal roofing systems.
Theory/Lab. Prerequisites: CNS 1113, CNS 1202, CNS 1223. Offered in the fall semester.

BLD 2513 INTERIOR FINISHES AND SPECIALTIES
Featured in this course will be interior finishes for walls and ceiling systems and specialty items including: trim, finish hardware, millwork, doors and frames. Theory/Lab. Prerequisites: CNS 1113, CNS 1202, CNS 1223. Offered in the spring semester.

BLD 2805 CONSTRUCTION INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows the students to utilize and refine skills learned in their educational process. All work is to be performed in accordance with the industry standards and will be supervised by construction contractors and school representatives. Lab. Prerequisite: Departmental approval and an overall 2.0 GPA or greater.

BLD 2905 CONSTRUCTION INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows students to utilize and refine skills learned in their educational process. All work is to be performed in accordance with the industry standards and will be supervised by construction contractors and school representatives. Lab. Prerequisite: complete a minimum of two semesters of related course work or Division Chair’s approval.

CET 2123 PROPERTIES OF SOILS
Students will learn and apply properties of soils in related engineering problems. This course includes the study of critical properties of soils, soil types/soil structure, soil classification, site investigation, movement of water through soil, stress analysis, shear strength, foundations, site improvement and soil stability in slopes. Theory/Lab. Prerequisite: MATH 1513.

CET 2213 TRANSPORTATION
Students will learn and apply design components of modern roadway and other transportation systems. Theory. Prerequisites: MATH 1613, SURV 2303.

CET 2323 STATICS
Students will learn and apply concepts of forces, moments, reactions, free-body diagrams, friction, internal forces and moments of inertia. Theory. Prerequisite: MATH 1613.

CET 2805 INTERNSHIP
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their education process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: complete a minimum of two semesters of related course work or Division Chair’s approval.

CET 3103 ELEMENTS OF ELECTRICITY AND ELECTRONICS
Students will learn and apply elements of electrical engineering. This course includes the study of basic laws of electrical circuit applications, series and parallel connections of circuit elements, AC and DC circuits, energy, and power. Theory. Prerequisite: MATH 2144.

CET 3114 STRENGTHS OF MATERIALS AND STRUCTURAL ANALYSIS
Students will learn and apply concepts of stress, strain and deformation of bodies in tension, compression, shear, bearing, and torsion. This course includes the study of basic analysis and design of columns, beams, cables and arches, lateral loads, and slope/deflection theory. Theory. Prerequisite: CET 2323 and MATH 2144.
CET 3123
DYNAMICS/THERMODYNAMICS
Students will learn and apply the study of dynamic motion of particles and thermodynamic properties of materials. This course includes the study of kinematics, Newton’s Laws, work and energy principles, gas laws, energy analysis of closed systems, vapors and engine cycles. Theory. Prerequisites: CET 2323, MATH 2144.

CET 3213
STEEL STRUCTURES
Students will learn and apply principles of steel design to analyze and design structural steel members loaded with various types of force. Theory. CET 3114.

CET 3313
FLUID MECHANICS AND HYDRAULICS
Students will learn and apply basic fluid properties in related engineering problems. This course includes the study of conservation equations, dimensional analysis, modeling structures in hydraulic applications, flow in conduits, open channel flow, water pumps and pump selection hydraulic measurements, and forces acting on submerged bodies. Theory. Prerequisite: CET 2323 and MATH 2144.

CET 3543
FUNDAMENTALS OF ENGINEERING EXAM PREPARATION
This course will prepare students to take the Fundamentals of Engineering Examination. Students will apply their knowledge of both the civil and general engineering portions of the exam by reviewing problems and testing on these topics in the same manner as the FE exam. Prerequisite: Classification as a senior.

CET 4213
REINFORCED CONCRETE DESIGN
Students will learn and apply their knowledge of principles of reinforced concrete to analyze and design structural members with various types of forces. Theory/Lab. Prerequisite: CET 3114.

CET 4224
HYDROLOGY
Students will learn and apply basic principles of surface and groundwater hydrology and their application. This course includes the study of hydrologic cycle, weather and hydrology, hydrographs, hydrologic measurements, runoff and peak flow analysis. Theory. Prerequisite: CET 3313.

CET 4233
WATER/WASTE WATER MANAGEMENT
Students will learn and apply chemical and biological concepts, mass balance, water/wastewater quality, unit operations/processes, the design of processes in water/wastewater treatment plants, and solid waste management. Theory. Prerequisites: CHEM 1314, CET 3313.

CET 4413
CAPSTONE
Students will apply their knowledge of civil engineering topics by completing a project. This project will include planning, design, and a final presentation. Theory/Lab. Prerequisite: classification as a senior.

CET 4812
INTERNSHIP
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their education process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: complete a minimum of five semesters of related course work or Division Chair’s approval.

CHEMISTRY (CHEM)

CHEM 1314 (L, N)
GENERAL CHEMISTRY I
This course includes the study of fundamental laws, periodic principles, and theories dealing with the structure and interaction of matter, chemical bonding, chemical reactions, the physical states of matter, changes of state, and solutions. These fundamental concepts will be applied to the solution of quantitative problems related to chemistry. Theory/Lab. Prerequisite or Co-requisite: MATH 1513 or Division Chair Approval.

CHEM 1515 (L, N)
GENERAL CHEMISTRY II
A continuation of General Chemistry I; the course requires an understanding of the fundamental laws and theories dealing with the structure and interactions of matter. These principles will be used in understanding the properties of gases using Boyle’s Law, Charles’ Law, Gay-Lussac’s Law and Dalton’s Law. Liquids and solids will be examined with respect to interionic and intermolecular forces. Solutions will be discussed with respect to solubility of substances and the effects of temperature and pressure. Factors involved with reaction rates and chemical equilibrium will
be studied. Nomenclature, definitions, control and measurement of pH of acids and bases will be presented. Determination of oxidizing and reducing agents. Selected topics involving the fundamentals of nuclear, organic, and biochemistry will be studied. Fundamental principles will be applied to the solution of quantitative problems related to chemistry. Theory/Lab. Prerequisite: CHEM 1314.

CONSTRUCTION TECHNOLOGY (CNS)

CNS 1111
INTRODUCTION TO CONSTRUCTION
As an introductory course in construction, study will target the general concepts, ideas, history and relationships of the construction trade, including employment opportunities, job descriptions, general safety and standards. Theory. Offered in the fall and spring semesters.

CNS 1113
CONSTRUCTION MATERIALS AND PROCEDURES
This course includes the latest information on materials, systems and methods used in the construction industry. It is formatted around the Construction Specifications Institute (CSI) 16 divisions. This course will also strengthen the skills the student has gained in the College Cornerstone experience. It will include a Career Cornerstone experience that will emphasize networking with professional and student organizations, continue to develop the students Career Passport, and give students the opportunity to have career shadowing experience with the experts in the field. Theory/Lab. Offered in the fall and spring semesters.

CNS 1123
FIELD ENGINEERING I
The principles and procedures of site layout to include establishing grades for bulk excavation, building pads, site drainage, site utilities and site improvement will be examined. The course will also include extensive use of the transit level, builder’s level and laser. Theory/Lab. Offered in the fall and spring semesters.

CNS 1202
CONSTRUCTION BLUEPRINTS AND SPECIFICATIONS
The course emphasizes the study of the symbolic language and different components of blueprints including floor plan elevations and details for the Architectural and M.E.P. drawings. The course work will also include the study of the specifications and their relation to building projects. Theory/Lab. Offered in the spring semester.

CNS 1213
CONSTRUCTION SAFETY
In this course, job site construction safety and current OSHA standards for the construction industry will be studied and applied. Theory. Offered in the summer semester.

CNS 1223
FIELD ENGINEERING II
Techniques and procedures of construction project layout will be emphasized, including linear and angular measurements, erection of batter boards and other layout reference points for interior and exterior layout. Assignments will involve the use of construction plans and specifications. Theory/Lab. Prerequisite: CNS 1123. Offered in the spring and summer semesters.

CNS 1303
ESTIMATING I
Quantity take-off with emphasis on excavation, concrete, masonry, structural steel, rough carpentry, H.M./wood doors with hardware and miscellaneous specialty items will be studied. Theory/Lab. Prerequisites: MATH 1513, CNS 1113, CNS 1202. Offered in the spring and summer semesters.

CNS 1333
FIELD ENGINEERING III
An introduction and application of plans surveying procedures and field problems related to linear and angular measurements, including coordinate geometry, differential leveling and topographic surveys. Application of theory will involve the use of modern survey equipment including Total Stations and Data Collectors. Theory/Lab. Prerequisites: CNS 1223, MATH 1613. Offered in the spring semester.

CNS 2090 (1-9 CREDIT HOURS)
SPECIAL PROJECTS
Individual study under the supervision of an instructor will be arranged with credit hours to be determined. Projects may be undertaken in any area of the Construction Technology Department options. Theory/Lab. Prerequisite: The Division Chair’s approval.

CNS 2403
PROJECT SCHEDULING
Project schedules will be developed which include bar method and the (CPM) critical path method. Selected assignments will require computer utilization. Shop drawings and material submittals scheduling will also be included. Theory. Prerequisite: CNS 1303, CNS 2432. Offered in the fall semester.
CNS 2413
MECHANICAL SYSTEMS
An in-depth examination will be made of mechanical systems as to identification, application and function. Emphasis will be placed on plumbing, heating, cooling, air distribution and ventilation systems. Theory/Lab. Offered in the summer and fall semesters.

CNS 2432
CONSTRUCTION DOCUMENTS AND SHOP DRAWING REVIEW
This course will cover the submittal process which will include reviewing the specifications for items that need to be submitted, creating a submittal tracking log and the checking of submittals. This course also will study the closeout process which includes as-builts, warranties and owner manuals. Studied will be the division zero and one specifications as they relate to bidding, bonds, insurance and the general conditions. Theory/Lab. Prerequisites: CNS 1113, CNS 1202, CS 1013. Offered in the summer semester.

CNS 2443
ASPHALT AND CONCRETE PAVING
The materials, techniques, teaching of installation, equipment and cost of operations for asphalt and concrete paving will be examined. Theory/Lab.

CNS 2543
CONCRETE CONSTRUCTION
Reinforced concrete construction techniques including forming systems, concrete placement and finishing will be covered in this course with an emphasis on slabs, walls, beams, columns, curb and gutter, bridge and highway construction. Pre-case and tilt-up systems will also be included. Theory/Lab. Prerequisite: CNS 1113. Offered in the summer semester.

CNS 2683
C.M. CAPSTONE EXPERIENCE
This course is a Capstone course for the graduating student. It includes the fundamental theories and strategies of construction management and administration. It expands the concepts presented in previous construction course work through simulation and actual problem resolution practice. The student will complete his/her Career Passport, exit assessment instruments and other graduation requirements. Theory/Lab. Prerequisites: CNS 1213, CNS 2403, BLD 2303 and at least one Internship. Offered in the summer semester.

CNS 2693
PRINCIPLES OF CONSTRUCTION MANAGEMENT
Students will study construction management principles and techniques and learn the application of these principles through lecture, case studies and laboratory experiences. Topics to be covered include planning, organizing, staffing, directing, cost and risk control, subcontractor management, purchasing and project start up and close out procedures for a commercial construction project. Theory. Prerequisite: CNS 2432. Offered in the summer semester.

CNS 2800 (1-12 CREDIT HOURS)
CONSTRUCTION INTERNSHIP
This internship is a cooperative agreement between industry and education which allows the students to utilize and refine skills learned in their educational process. All work is to be performed in accordance with industry standards and will be supervised by construction contractors and school representatives. Lab. Prerequisite: Departmental approval and an overall 2.0 GPA or greater.

CNS 2900 (1-12 CREDIT HOURS)
CONSTRUCTION INTERNSHIP
This internship is a cooperative agreement between industry and education which allows the students to utilize and refine skills learned in their educational process. All work is to be performed in accordance with industry standards and will be supervised by construction contractors and school representatives. Lab. Prerequisite: Departmental approval and an overall 2.0 GPA or greater.

COMPUTER SCIENCE (CS)

CS 1013
COMPUTER LITERACY & APPLICATIONS
This course is an applied exploration of personal computing in which students learn system operation and maintenance, Internet technologies and primary desktop applications. Theory/Lab.

CULINARY ARTS (CUA)

CUA 1003
ADVANCE CULINARY CONCEPTS
The primary purpose of this class is to get introductory hands on instruction in using knife skills, cooking methods, safety and sanitation, starch and vegetable cookery, stocks, soups, intro to sauce, organizing menu rotation, mise en place and final preparation, serve/safe, bread and pastry introduction, and intro to basic dining room
operations. There will be one field trip to network with potential employers and OSUIT Culinary Arts. Theory/Lab.

CUA 1005
INTRO TO CULINARY CONCEPTS
Students will learn how to purchase and prepare healthy cooking for three to five people. Cooking methods for vegetarian, seafood, beef, and pork will be presented. Instructor to demo first, then teams of two will demonstrate their competencies. This class also does the final touch for the lunch line foods and beverages and bread and pastry introduction. Theory/Lab.

CUA 1101
VEGETARIAN AND PLANT BASED CUISINE
In this course, students will learn how to create and cook many different styles of vegetarian and plant based cuisines. They will learn what ingredients can and cannot be used in certain varieties of vegetarian cuisine. Students will also learn how to design plant based cuisine menus and learn their different applications. In this class, students will learn how to cook and utilize different vegetarian ingredients. Lecture will be on how the cuisine has evolved and changed over the years and what we see it doing in the future.

CUA 1102
CULINARY THEORY
This is an introduction to the food service industry. Students will learn to establish and maintain high standards of personal and industry sanitation and safety; identify various tools and equipment used in today’s kitchens; effectively communicate (both verbally and in writing) the meaning of kitchen and dining room brigades; explain the basics of heat transfer and cooking methods. Students will also discuss the process of menu building and costing, and price a 3-course menu. Plan and participate in a (6 hour) field trip related to this class. A research project and presentation is also a requirement. Guidelines will be provided. We will discuss the basic production of white stock, brown stock and fumet; the basics of mother sauces and soup production. There will also be an introduction to dairy products, coffee and tea, herbs and spices. Theory.

CUA 1135
SKILL DEVELOPMENT I
This course is an introduction to commercial kitchen equipment: meat grinder, sausage stuffer, food processor, conventional and convection ovens, steamers, and steam jacketed kettles. The student will receive an introduction to basic sauces and soups, and learn culinary knife skills and cuts. Lab.

CUA 1145
SKILL DEVELOPMENT II
In this course, students will learn quantity food production skills in preparation of breakfast food, meats, vegetables, stocks, soups, sauces, desserts, sandwiches, salads and grilled food items. Students will train in a “real world” environment and be exposed to production forecasting, cost controls, profit and loss statements and customer service skills. Students will participate in an early morning rotation in breakfast cookery. Lab. Prerequisite: CUA 1135.

CUA 1151
FOOD SAFETY
This course is an introduction to safe food production practices governed by changing federal state regulations. Topics covered include: prevention of food-borne illness through proper handling of potentially hazardous foods, HACCP procedures, legal procedures, legal guidelines, kitchen safety, facility sanitation, safe food preparation, storing and reheating guidelines. Student will take the National Restaurant Association ServSafe examination. Theory.

CUA 1162
FOOD SERVICE MANAGEMENT
Course will cover the principles, theories, human relations techniques and decision making skills that are required to manage a workforce profitably. Within this course, management techniques will be discussed as well as legal aspects of discrimination, hiring, continuous employment practices, and employee termination. Students will take a National Restaurant Association Education Foundation examination for this Supervision text. Theory.

CUA 1243
INTRODUCTION TO BASIC FRUIT AND VEGETABLE CARVING
This course covers knife handling techniques, fruit preparation, basics of using color, designing and preparing a plan for carving, preparation of different garnishes and vessels, making of vegetable showpieces, making of fruit showpieces, and display techniques.

CUA 1294
BREAKFAST COOKERY
This course is designed to introduce students to action stations, breakfast cooking concepts, and high volume breakfast cooking. This course will include instruction and practical application in the following: eggs cooked to order,
omelets, pancakes, waffles, French toast and hot cereals. Student will also be trained in offering daily or weekly specials to include crepes, quiches and poached egg dishes, and buffet set up for quantity breakfast feeding. Lab. Prerequisite: CUA 1135, CUA 1145.

CUA 1311
MEAT FABRICATION
This lab class will introduce students to beef, pork, chicken, fowl, and fish identifications and fabrication as well as purchasing and cost control fundamentals in the food service industry. Prerequisites: CUA 1135, CUA 1145.

CUA 1375
BREAD AND PASTRY PRODUCTION
This course is an introduction to baking, emphasizing the basic formulas, fundamentals, and procedures. Students will learn proper terminology, equipment, and utensils. Additional emphasis will be placed on restaurant production of pies, cakes, variety breads, fillings, sweet dough, and specialty items. Students will prepare classical pastries and present whole decorated desserts, plated, individual, flambé, and frozen. Lab. Prerequisites: GTGE 1111, CUA 1102, CUA 1135, CUA 1145.

CUA 1415
DINING ROOM OPERATIONS
Learn and apply the skills to recognize A la Carte Dining Room equipment, service techniques such as greeting, seating, order taking, serving, clearing and crumbing. Demonstrate the ability to handle unexpected circumstances and special situations related to customer service. Learn and apply the technique of banquet setting, Mise en Place, and practice the “Sense of Urgency” while planning and developing the set-up and the break down procedures of upscale buffet. Show the importance of an appropriate setting and atmosphere including: traffic flow, music, lighting levels, action station set up, and dessert station. Learn multiple napkin folds and presentations. Establish and maintain high standards and personal and industry sanitation and safety. Observe table side cooking techniques and other preparations, following our guidelines. Learn to physically be able to work the designated section of the floor plan for a period of 8 weeks, 4 hours per day, including working the side duties required to properly operate the Dining Room. Also acquire knowledge in cash handling procedures, guest seating, and managing a dining room.

CUA 2101
EXPLORING WINES
Must be 21 years of age to participate. Learn the basics of wine making, buying, handling, opening – pouring and tasting. Study the major white grape varieties as well as reds. Explore wine geography. A field trip to a winery or a wine and spirit store is also included in this course. Theory.

CUA 2123
ADVANCED BAKING
Students will utilize and develop the skills learned in Baking & Pastry (CUA 1375) to prepare more complex and challenging plated desserts and cakes. Advanced cakes will include piping techniques, use of fondant, sculpted cakes, and tiered wedding cakes. Basic use of gum paste and coloring techniques will be covered. Advanced desserts will include production of entremets, classic European Tortes, chocolates and confections, and soufflés. Theory/Lab. Prerequisites: CUA 1135, CUA 1145, CUA 1375.

CUA 2183
SHOWPIECES
Students will develop skills needed to plan, execute, and display artistic showpieces made from food products. Mediums to be covered are pulled sugar, cast sugar, pastillage, ice, chocolate, tallow, and salt dough. Basic uses of color, form, and design will be covered. Students will prepare pieces for display in the dining room as well for competitions. Theory/Lab. Prerequisites: CUA 1135, CUA 1145, and CUA 1375.

CUA 2191
ICE SCULPTING
In this course the students will learn the steps needed to safely carve ice. This course includes the preparation of templates, equipment, clothing, tools, selecting the ice block, preparing the ice, using the template, cutting away (trimming) the large excess ice, carving, scoring – to enhance the sculpture, and balance check. The student will also learn finishing touches, temporary storage and display demonstration. Lab.

CUA 2213
CONTEMPORARY AMERICAN RESTAURANT
In this course, students will apply, demonstrate and review and review basic cooking methods and apply them to a contemporary American restaurant. Students will learn the facets of running the front of the house including cash handling, menu costing, service, and dining room setup. They will also learn to run a hot line during dinner service.
Production will focus on modern techniques and presentations and the creation of seasonal menus highlighting locally sourced ingredients. Student will focus on presentation and quality for their guests.

CUA 2215
FOOD PROCESSING LECTURE SERIES
The course trains and educates students in the area of food technology. Students will be trained in creating new processing technologies, develops novel food ingredients, investigates available raw materials, develops formula proportions, delivers finished products, calculates formula costs, creates packaging style, investigates ingredient and nutrition labels, investigates label claim potential, creates food service or home preparation procedure, identifies serving size and portions associated with the type of end use, prepares and serves the product following the identified procedures, develops the recipe, develops the preparation serving style, prepares the food to a test team, prepares the test team rates and critiques the food, prepares a response profile to optimize the food. Theory/Lab. Instructor approval required.

CUA 2223
CAKE DECORATING AND SHOW PIECES
Students learn techniques for different icing productions, preparing of cakes, using fondant, piping skills, and finishing to enhance their finished cakes. Basic design and color will be discussed and students will learn the proper techniques for handling of chocolate as well as molding, shaping, using color, and tempering. Students will learn the techniques in cooking of sugar, isomalt, pastillage, and salt dough. Each student is expected to create a product using each of the techniques covered in class. Final projects are in the medium of the student’s choice. CUA 1135, CUA 1145, CUA 1375.

CUA 2315
BUFFET COOKERY
In this course, students will learn to prepare foods for quantity service. Students will fabricate to portion size main protein items. They will prepare all soups, sauces, vegetables, starches, and garnishes. Students will utilize the cooking methods and techniques learned in SKILLS 1 and SKILLS 2, and apply these skills in a busy, live service environment. Emphasis will be on food quality, proper methods, techniques, and professionalism. Theory/Lab. Prerequisites: GTGE 1111, CUA 1135, CUA 1145, CUA 1294.

CUA 2415
GARDE MANGER
Garde Manger is a competency based introduction to the world of the cold kitchen. It will include instruction and application of condiments, cold soups and sauces (including vinaigrettes), hors d’oeuvres, terrines, pates, galantines, ballotines, roulades, sausage, and cheese. Cold and hot smoking, curing and pickling will also be covered. Sanitation and mise en place are essential in the cold kitchen. Theory/Lab. Prerequisite: Prerequisites: GTGE 1111, CUA 1135, CUA 1145, CUA 1294.

CUA 2473
AMERICAN CUISINE
This course will introduce regional recipes, local history, and culture with distinct regional ingredients. Each week the class will explore recipes and historical and cultural information as well as a guide to ingredients specific to that region. Lab. Prerequisites: GTGE 1111, CUA 1135, CUA 1145, CUA 1294, CUA 1375, CUA 2315, CUA 2415.

CUA 2552
PURCHASING
This class will introduce methods of purchasing and cost control in food service systems. Upon completion of the course, the student will be able to define; the market and market regulations, identify the knowledge requirements and ethical principles of a food purchaser, describe procedures used to select vendors, and determine food and non-food needs, write specifications for food and equipment items, identify characteristics of the quality food necessary to maintain specific demands, explain the receiving process and indicate the importance of each step. We will discuss the types of food storage and describe the requirements of each as well as work with inventory control, including records that may be used. Students should understand the role of governmental agencies in assuring food quality and laws that affect purchasing operations and the need for record keeping in purchasing, receiving, storage, and storeroom. They will identify factors influencing sanitation in procurement, receiving, and storage and determine quantities to be purchased and methods of cost control. In this class the student will also have a wide range of product identification and be able to identify products by sight taste and smell. The student will also have meat identification and be shown how to break down various primal cuts of meat and how to trim and present retail cuts as well. Also the purchasing class will maintain the department’s organic garden when weather permits.
CUA 2575
INTERNATIONAL COOKERY
In this course, students will practice foods cooked to order. Students will prepare foods served during lunch hour in the Culinary Arts restaurant to include sautéing, braising, steaming, grilling, frying, roasting, and broiling. Students will practice skills associated with line cooking including: cooking vegetables, grains, legumes, pastas, eggs, meats and cereals. Instructions will also be provided on catering and banquet cooking and service. Lab. Prerequisites: GTGE 1111, CUA 1135, CUA 1145, CUA 1151, CUA 1162, CUA 1214, CUA 1294, CUA 1375, CUA 2315, CUA 2415, CUA 2553, CUA 2575, CUA 2595.

CUA 2595
CULINARY SOFT SKILLS
Students enrolled in this course must be flexible and adaptive and will participate in off-campus cooking demonstrations, recruiting trips to technology centers and high schools, research assignments, and make presentations to other classes. Students will learn tracking and cost control, receiving and storing food, store room maintenance, and budget control. Theory and practical review on cooking methods will be taught and Mystery Basket and Chefs Table Cooking competencies will be examined. Students will also demonstrate cooking and service techniques. Students will conduct Sanitation and Safety inspections, take corrective action where needed, and team with instructor to assist on internship visits. Students will have the opportunity to consult and assist a client with planning an event. A field trip is scheduled during the semester. Prerequisite: Division Chair approval only.

CUA 2623
CULINARY ARTS CAPSTONE
In this course, students will learn and practice foods cooked to order. The students will prepare foods served in the Culinary Arts restaurant to include sautéing, braising, steaming, grilling, frying, roasting and broiling. Students will practice skills associated with line cooking including: cooking vegetables, grains, legumes, pastas, eggs, meats. All program requirements must be complete before enrolling in this course. Student must have a minimum 2.0 cumulative GPA. Co-requisite: CUA 2809. Lab. CUA 1102, CUA 1311, CUA 1135, CUA 1145, CUA 1151, CUA 1162, CUA 1214, CUA 1294, CUA 1311, CUA 1375, CUA 2315, CUA 2415, CUA 2553, CUA 2575, CUA 2595, CUA 2809.

CUA 2809
CULINARY INTERNSHIP
Students enrolled in this internship will work in industry with supervised employment and observation. All program requirements must be complete before enrolling in this course. Student must have a minimum 2.0 cumulative GPA. Co-requisite: CUA 2623. Lab. CUA 1102, CUA 1311, CUA 1135, CUA 1145, CUA 1151, CUA 1162, CUA 1214, CUA 1294, CUA 1311, CUA 1375, CUA 2315, CUA 2415, CUA 2553, CUA 2575, CUA 2595.

DIESEL & HEAVY EQUIPMENT TECHNOLOGY – Case New Holland (DCNH)

DCNH 1323
ELECTRONIC SYSTEMS
This course requires the student to use diagnostic testing as specified by manufacturer software, literature, troubleshooting charts and wiring diagrams to complete required service, repair, or replacement procedures on CNH agricultural and construction equipment electronic systems. Students will identify, locate, service, test, and repair connectors, sensors, actuators, switches, and control modules. Students will use onboard diagnostic systems, T adapter Kits, Digital Volt/Ohm Meters, electrical repair kits, crimper tools, and the EST service tool. Theory/Lab. Prerequisite: DHES 1223. (Same course as DHES 1323)

DCNH 1333
CNH HYDRAULIC SYSTEMS
This course is designed to teach the systems operation and the testing, adjusting, maintenance, and repair procedures for pilot operated hydraulic systems, load sensing pressure compensated hydraulic systems, electro-hydraulic systems and hydrostatic systems specific to CNH agricultural and construction equipment. Students will identify system components and be able to discuss their operation and application. Students will identify different systems and troubleshoot live units, trace the oil flow through the systems and state the systems operation and application. Students will use onboard diagnostic systems, T adapter Kits, Digital Volt/Ohm Meters, flow meters, pressure gauges, hydraulic schematics and CNH specific tools to diagnose hydraulic system malfunctions. Theory/Lab. Prerequisite: DHES 1233.

DCNH 2416
CNH ENGINES & FUEL SYSTEMS
This course is an introduction to engine terminology, operating principles and maintenance. CNH Engine systems are examined along with diagnostic, repair and maintenance procedures. The student will be given an understanding of the theory, operation, troubleshooting and repair of diesel engine intake, exhaust and fuel systems.
used in CNH equipment. The function and operation of various types of fuel systems, fuel system maintenance and basic troubleshooting is covered. This course emphasizes the application of repair procedures for engines. Disassembly, parts evaluation and reusability, failure analysis, assembly, tune-up procedures, and troubleshooting are covered along with the proper use of the EST service tool. Safety, special tool use, and use of service publications are stressed throughout the course. Theory/Lab.

DCNH 2514
CNH POWER TRAIN
This course will discuss the basic components, operations, maintenance, diagnostics with the EST service tool and the repair of power train systems used in CNH agricultural and construction equipment using proper special tooling. Included will be basic components, couplings, clutches, manual transmissions, torque converters, and power shift transmissions, hydrostatic transmissions, differentials, brakes, and final drives. Hydraulically driven machines will also be included. Theory/Lab.

DIESEL & HEAVY EQUIPMENT TECHNOLOGY (DHE)

DHE 2033
DIESEL SKILLS I
(This course is a part of a Cooperative Alliance Agreement with technology centers and is not offered on the OSU Institute of Technology campus.)
This course includes a comprehensive coverage of safety issues as they pertain to the Diesel Industry. Specific safety rules, maintaining a safe work environment, following company policies and procedures and maintaining tools and equipment will be stressed. Additionally, workplace relationships will be examined and students will be exposed to basic academic skills such as problem solving, reading comprehension and writing skills necessary to be successful within the Diesel Industry. Theory.

DHE 2043
DIESEL SKILLS II
(This course is a part of a Cooperative Alliance Agreement with technology centers and is not offered on the OSU Institute of Technology campus.)
In this course, the student will demonstrate an ability to perform preventive and predictive maintenance on diesel vehicles. Maintenance and use of reference materials, pre-delivery inspections, scheduled maintenance inspections, scheduled services and the preparation of documentation of maintenance services will be studied. Theory.

DHE 2053
DIESEL SKILLS III
(This course is a part of a Cooperative Alliance Agreement with technology centers and is not offered on the OSU Institute of Technology campus.)
In this course students will study electrical circuits and charging and starting systems. Diagnosis, service and repair of electrical and electronic systems will be performed. Students will learn the use of meters and test equipment in troubleshooting electrical systems. Identifying electrical symbols used on wiring diagrams and schematics will be covered. Students will also diagnose, service and repair starting systems and charging systems. Theory/Lab.

DHE 2065
GAS COMPRESSION SKILLS I
(This course is a part of a Cooperative Alliance Agreement with technology centers and is not offered on the OSU Institute of Technology campus.)
Students will gain a basic understanding of the natural gas industry by tracing the flow of gas from the well to the end user. The course includes natural gas properties, equipment identification and function, safety, OSHA, EPA, Hazardous Materials and Waste regulations. Tools, fasteners, pipe, pipe fittings, valves, tubing, tubing fittings and precision measurements will be studied. Students will take a technical pretest to determine their entry-level technical knowledge. In addition, as a part of this course students will study the operation and application of two and four stroke cycle reciprocating engines to include engine cooling and lubrication systems, lube oil analysis, startup procedures, tune-up procedures, preventive and predictive maintenance. Proper alignment and installation of large stationary engines will be included. Theory/Lab.

DHE 2075
GAS COMPRESSION SKILLS II
(This course is a part of a Cooperative Alliance Agreement with technology centers and is not offered on the OSU Institute of Technology campus.)
This course introduces electrical laws and principles. It includes the use of volt/ohm meters, amp probes, wiring diagrams and electrical schematics, wire and connector repair methods and semiconductors. Students will learn to diagnose, maintain and repair electrical circuits, charging circuits and starting circuits. Standby electrical power generation will also be included. Emphasis is on diagnostics, preventive maintenance and correct repair procedures. Also covered in this course, overhaul
procedures for reciprocating natural gas engines. This includes disassembly, inspection, measurements, failure analysis and reassembly. The use of hand tools, special tools, precision measurement tools, shop safety and usage of manuals is stressed throughout the course. Theory/Lab.

DHE 2090 (1-9 CREDIT HOURS)
SPECIAL PROJECTS
Individual study is conducted under the supervision of an instructor. Projects may be undertaken in any area of diesel and heavy equipment with credit hours assigned according to level and amount of effort required. Theory/Lab. Prerequisites: Written instructor-student plan and the program chair’s approval.

DHE 2800 (1-12 CREDIT HOURS)
INTERNSHIP
A cooperative agreement between industry and education allows students to utilize and refine skills previously learned during their educational process. All work will be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have completed required DHE core courses.

DIESEL & HEAVY EQUIPMENT TECHNOLOGY - Aggreko Technician Training Program (DHEA)

DHEA 1113
MAINTENANCE FUNDAMENTALS
This course introduces skills and knowledge required by all service technicians including OSHA, EPA, hazardous materials, and waste regulations, precision measurement, tools, fasteners, pipe, pipe fittings, valves, tubing, tubing fittings, as well as copper tube flaring, swaging, cutting and brazing. Students are introduced to product identification and service literature usage. This is the career cornerstone course which will include a review of the OSU Institute of Technology Handbook, a technical pre-test, and career exploration with Aggreko. Students will review the history of Aggreko and the service provided by Aggreko. Theory/Lab.

DHEA 1123
DIESEL ENGINE I – DIESEL FUNDAMENTALS AND MAINTENANCE
This course is an introduction to the theory and operation of the four stroke diesel engine along with standard maintenance procedures for the Aggreko diesel generator package. It includes component identification and function, the four engine systems, electronic governor principles, and safety issues. This course emphasizes the use of the Aggreko Generator Quality Checklist and associated maintenance procedures. Engine servicing and preventative maintenance are examined. Theory/Lab.

DHEA 1133
INTERNSHIP I
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must have a valid driver’s license, be in good academic standing and have successfully completed all required core courses.

DHEA 1213
DC/AC ELECTRICAL FUNDAMENTALS
This course covers safety and the basic principles of AC/DC electrical circuits. Subjects to be included: operating characteristics of the circuits, various components, electrical laws, series circuits, parallel circuits, series-parallel circuits, magnetism, impedance, and resonance. Students will locate and identify components from schematics. The operation of electrical components such as switches, relays, contactors, starter boxes, transformers, relays, timers, capacitors and motor starting relays will also be examined. Theory/Lab.

DHEA 1233
INTERNSHIP II
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must have a valid driver’s license, be in good academic standing and have successfully completed all required core courses.
academic standing and have successfully completed all required core courses.

DHEA 1313
GENERATOR SYSTEMS I – THEORY & OPERATION
This course is a study of the fundamental theory, operation and application of the electrical generator. The course introduces AC generator principles, automatic voltage regulation, generator control systems, and generator wiring configurations. The focus is on the Aggreko canopy size generator. (30 – 300 kW). Students will study start up procedures, total system function, maintenance and repair.

DHEA 1323
AGGREKO BASIC REFRIGERATION
This course covers the use of industry specialized tools as well as copper tube flaring, swaging, cutting and brazing. It includes the theory of the compression refrigeration cycle, components which make up a refrigeration system, the operation and analysis of basic refrigeration systems including evacuation, charging, recovery, control adjustments and efficiency checks. Theory/Lab.

DHEA 1343
SEA UNITS AND NEW GENERATION II AIR CONDITIONERS
This course will introduce the student to the two basic air conditioners used in the Aggreko fleet. The Special Events Air conditioner (SEA) and the New Generation II air conditioner. Topics include installation parameters and procedures, applications and limitations for each, control schemes, wiring schematics, controller programming, refrigerant circuits, Thermostatic Expansion Valve (TXV) operation, and special applications. The 15- and 30-ton SEA units will be covered along with the 35- and 70-ton New Generation II units. Safety, refrigerant handling procedures, and special considerations for R-410a will be topics of discussion in conjunction with hands-on exercises. Theory/Lab. Prerequisite: DHEA 1323.

DHEA 2412 (12 CREDIT HOURS)
INTERNSHIP III
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must have a valid driver’s license, be in good academic standing and have successfully completed all required core courses with a minimum 2.0 GPA.

DHEA 2413
AGGREKO MOTOR STARTING & MOTOR CONTROLS
This course introduces the fundamental concepts of electrical motors and associated electrical controls. Topics include ladder diagrams, schematic diagrams, contactors, and motor starters, control relays, timing relays, pilot control devices, AC/DC motors and related control devices. Upon completion, students should be able to properly select, install and troubleshoot motors and associated control systems. Theory/Lab. Prerequisite: DHEA 1213.

DHEA 2423
ELECTRICAL DISTRIBUTION
This course covers the various systems that a customer might request including single-phase 120/240 volt, and 3-phase systems that include 240 volt delta, 120/208 volt, and 277/480 volt. It covers the principles behind selecting an electrical distribution system including the advantages, disadvantages and limitations of each. The following topics will be covered: distribution equipment, system operation, planning, company policy, safety regulations, correct phasing, load capabilities, protection, and installation. Theory/Lab. Prerequisite: DHEA 1213, DHEA 1313.

DHEA 2433
INTERNSHIP IV
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must have a valid driver’s license, be in good academic standing and have successfully completed all required core courses.

DHEA 2523
DIESEL ENGINE II – TROUBLESHOOTING & REPAIR/REPLACEMENT
This course covers the typical problems associated with diesel engines and how to identify the probable causes. Safety and the use of technical manuals are stressed. This course emphasizes repair and replacement procedures for diesel engines, parts evaluation, reusability and failure analysis. Trouble shooting scenarios, repair, and/or replacement of engine components based on actual Aggreko service calls and historic data. Theory/Lab, Prerequisite: DHEA 1123, DHEA 1213.
DHEA 2533
INTERNSHIP V
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must have a valid driver’s license, be in good academic standing and have successfully completed all required core courses.

DHEA 2543
OIL FREE AIR COMPRESSORS – THEORY & OPERATION
This course is an introduction to the Aggreko air compressor, refrigerated air dryer, and desiccant air dryer fleet. It is designed to enhance the student’s ability to operate, troubleshoot, maintain and repair an oil free air compressor, desiccant air dryer, and refrigerated air dryer. Other topics covered include: compressed air safety, principles of compressed air, rotary screw compressor operation, electrical and pneumatic controls, installation and applications. Theory/Lab, Prerequisite: DHEA 1123, DHEA 1213, DHEA 2523.

DHEA 2613
GENERATOR SYSTEMS II – ADVANCED GENERATOR CONTROLS
This course will familiarize the student with advanced generator controls that are currently being used in the Aggreko fleet. Both the Deif (GEMPAC) and Deep Sea Electronics (5510) controllers will be discussed in depth. Compatible computer software will also be covered in detail. Each student will have the opportunity to learn to navigate through the controllers programs using the touch pad and applicable software. Other covered topics will include uploading the newest versions of software, completing retrofits, and setting up configurations for specific operations such as paralleling and base load. Theory/Lab, Prerequisite: DHEA 1313.

DHEA 2623
AGGREKO CAPSTONE
The Aggreko Capstone course will involve team projects to examine the installation, operation, service and repair of Aggreko mobile units. It will also cover controls, wiring, schematic reading, system diagnosis and safety. Special emphasis will be placed on integration of all the technical and general education classes. The course will be arranged so the student will have a very good understanding of the Aggreko business model. The course will include exit assessments and other graduation requirements. Theory/Lab.

DIESEL & HEAVY EQUIPMENT TECHNOLOGY - CAT Dealer Prep (DHEC)
DHEC 1113
INTERNSHIP I
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills, and learned during their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Prerequisites: Student must be in good academic standing, completed previous required core courses and must have a valid driver’s license. Lab.

DHEC 1124
INTRODUCTION TO CATERPILLAR
This course will include a review of the OSU Institute of Technology Student Handbook and discussions of OSU Institute of Technology: class, lab, and internship policies and procedures. Upon completion, students will demonstrate the ability to administer and use the Caterpillar Literature Library. This includes critical literature such as service and parts manuals and reporting systems like SIMS (Service Information Management System). Students will identify hardware and tools, and describe proper uses. This is the career cornerstone course which includes a pre-test, an introduction to Caterpillar and participating dealer history, and career exploration. Theory/Lab.

DHEC 1134
CAT ELECTRICAL FUNDAMENTALS
This course will include the theory and application of basic electrical concepts, the use of diagnostic tools, troubleshooting and wiring repair procedures. Emphasis will be put on electrical systems analysis, along with preventive and predictive maintenance. Students will locate and identify machine components from schematics. Students will also analyze charging and starting system faults. Theory/Lab.

DHEC 1213
CAT HYDRAULIC FUNDAMENTALS
This course will introduce the laws and principles of fluid mechanics. Students will locate and identify machine components from schematics, draw and read schematics, and identify fittings, seals and components used in
hydraulic systems on Caterpillar equipment. Pascal’s Law will be used to calculate force-pressure-area relationships. Students will also calculate energy-work-power relationships. Theory/Lab. Prerequisite: DHEC 1124.

DHEC 1223
CAT FUEL SYSTEMS
This course is a thorough examination of Caterpillar fuel systems including forged body, sleeve metering, scroll types and unit injection. Operation, testing and adjusting are stressed throughout the course. Theory/Lab. Prerequisite: DHEC 1124.

DHEC 1233
INTERNSHIP II
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills, and learned during their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing, completed previous required core courses and must have a valid driver’s license.

DHEC 1313
INTERNSHIP III
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills, and learned during their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing, completed previous required core courses and must have a valid driver’s license.

DHEC 1323
CAT ENGINE FUNDAMENTALS
This course is an introduction to Caterpillar engine terminology and operating principles. It includes identification and function of components and engine systems. Safety, precision measurements, use of hand tools, and technical manuals are stressed. Students will disassemble, determination reusability, assemble and adjusts components. Engine servicing and preventive maintenance are examined. Theory/Lab.

DHEC 1333
CAT MACHINE HYDRAULIC SYSTEMS
This course is designed to teach the systems operation and the testing and adjusting procedures for the pilot operated hydraulic systems, the load sensing pressure compensated hydraulic system, the electro-hydraulic system and the hydrostatic system. Students will identify different systems, trace the oil flow through the systems and state the systems operation. Students will also identify system components and be able to discuss their operation. Theory/Lab. Prerequisite: DHEC 1213.

DHEC 2413
CAT ENGINE DIAGNOSTICS AND REPAIR
This course emphasizes the application of repair procedures for Caterpillar internal combustion engines. Parts evaluation, reusability, failure analysis, and diagnostics will be covered. Safety, special tools, and service literature are stressed throughout the course. Theory/Lab. Prerequisites: DHEC 1323.

DHEC 2423
CAT MACHINE ELECTRONIC SYSTEMS
This course examines the application and operation of electronic systems used by Caterpillar for engines, transmissions, hydraulic systems, and monitoring systems. Diagnosis, system analysis and repairs are emphasized. Theory/Lab. Prerequisites: DHEC 1134, DHEC 1333.

DHEC 2433
INTERNSHIP IV
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills, and learned during their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing, completed previous required core courses and must have a valid driver’s license.

DHEC 2513
INTERNSHIP V
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills, and learned during their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing, completed previous required core courses and must have a valid driver’s license.

DHEC 2524
CAT POWER TRAIN I
This course will discuss the basic components and
operations of power train systems used in Caterpillar machines. Included will be basic components, couplings, manual shift transmissions and power shift transmissions. Basic components and component function are explained as they relate to the operation of various power train systems. Theory/Lab.

DHEC 2532 CAT MOBILE AIR CONDITIONING
This course examines theory and application of refrigeration principles as applied to Caterpillar mobile equipment. Emphasis is placed on preventive maintenance, diagnostics, repair, and regulation compliance. Theory/Lab. Prerequisites: DHEC 1134.

DHEC 2603 CAT POWER TRAIN II
This course will discuss the methods for transferring power. Mechanical power train components will include differentials, brakes, final drives, and undercarriage. Hydraulically driven machines will also be included. The content of this course should be treated as general information for power train components in all Caterpillar machines. Theory/Lab. Prerequisite: DHEC 2524.

DHEC 2636 CAT CAPSTONE
This course includes an applied research project. Research could include improvements in diagnostics, service and maintenance processes, technical support systems, emerging technology, etc. The technical aspect of study includes verification of competencies in areas such as: air conditioning, engines, drive train, electronics, hydraulic systems and safety. Project management is stressed as a key to completing the objectives for this course. During this course, diagnostic tooling will be used to evaluate machine system operation. Students will also participate in a post-test to determine technical competency gain. Theory/Lab.

DIESEL & HEAVY EQUIPMENT TECHNOLOGY - Gas Processors Association Natural Gas Compression (DHEG)

DHEG 1144 GAS COMPRESSORS
This course introduces the theory, application, maintenance, and repair of the reciprocating, rotary, and centrifugal natural gas compressor including operating principles, identification of the component parts and their functions, design characteristics, methods of balancing, and lubrication systems. Calculations of gas flow, rod loads, compressor sizing, horsepower ratings and compressor analysis charts will be included. Safety, precision measurement, use of the manuals, use of tools, and proper adjustments will be included with overhaul exercises. Theory/Lab.

DHEG 1153 FUNDAMENTALS OF MAINTENANCE
Students will gain a basic understanding of the natural gas industry by tracing the flow of gas from the well to the end user. The course includes natural gas properties, equipment identification and function, safety, OSHA, EPA, Hazardous Materials, and Waste regulations. Tools, fasteners, pipe, pipe fittings, valves, tubing, tubing fittings and precision measurements will be studied. Students will take a technical pretest to determine their entry-level technical knowledge. Theory/Lab.

DHEG 1213 GAS COMPRESSION CAPSTONE I
This course is the culmination of the mechanical portion of the Natural Gas Compression program and preparation for the first full summer semester internship. Students will research employability skills. During this course students will prepare and critique job applications, resumes, interview skills and portfolios. During preparation of the resumes and portfolios students will discuss how to best present the skills they have acquired in the previous classes, as well as how to describe the safety training they have received in preparation for the summer internship as natural gas compression facilities. Theory/Lab.

DHEG 1243 ENGINE PRINCIPLES
This course is a study of operation and application of two and four stroke cycle engines to include engine cooling and lubrication systems, lube oil analysis, startup procedures, tune-up procedures, preventive and predictive maintenance. Proper alignment and installation of large stationary engines will be included. Theory/Lab.

DHEG 1253 ADVANCED ENGINE TECHNOLOGY
This course introduces overhaul procedures for reciprocating natural gas engines. This includes disassembly, inspection, measurements, failure analysis, and reassembly. The use of hand tools, special tools, precision measurement tools, shop safety, and usage of manuals is stressed throughout the course. This course will also include an introduction to gas turbine engine operating principles and systems. Theory/Lab.
DHEG 1306
INTERNSHIP
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Prerequisites: Student must have a valid driver’s license, be in good academic standing and have successfully completed all required core courses.

DHEG 1312
INTERNSHIP I
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all required Natural Gas, and Arts and Sciences courses. Exceptions only with written approval of Natural Gas Compression faculty and HEVi program chair.

DHEG 1313
ENGINE AIR, FUEL AND STARTING SYSTEMS
Students will study the intake, exhaust, fuel and starting systems plus mechanical and hydraulic governors used on natural gas engines including an introduction to air/fuel ratio control systems. Theory of operation and development of skills in the repair, adjustment and testing of the component parts of these systems is also included. The effects of fuel properties, air/fuel ratio, and emissions on both rich burn and lean burn natural gas engines will be studied. Theory/Lab. Prerequisites: DHEG 1243, DHEG 1253.

DHEG 1323
DC/AC CIRCUIT ANALYSIS
This course covers the basic principles of DC/AC electrical circuits. Subjects to be include: operating characteristics of the circuit's various components, electrical laws, series circuits, parallel circuits, series-parallel circuits, magnetism, impedance, and resonance. Theory/Lab.

DHEG 1363
CNG REFUELING SYSTEMS CODES AND REGULATIONS
In this course, students will study and apply safety regulations and the four primary fire codes covering CNG fill stations and maintenance facilities including National Fire Protection Association (NFPA) 52 Vehicular Gaseous Fuel Systems Code, 70 National Electrical Code, and 30A Code for Motor Fuel Dispensing Facilities and Repair Garages, and International Fire Code.

DHEG 1373
CNG REFUELING SYSTEMS OPERATION, MAINTENANCE, AND INSPECTION
This course covers the basic introduction to CNG, health hazards and facility safety procedures, gas quality, fill station components and systems, fill station operation, maintenance, and inspection. Theory/Lab.

DHEG 2413
ENGINE ELECTRICAL
Students will study the theory and application of the ignition systems from magnetos to CPUs, electronic governors, air fuel ratio control systems and control panels used on natural gas engines with emphasis on maintenance, diagnostics, and repair of the systems and components. Theory/Lab. Prerequisites: DHEG 1313, DHEG 1323.

DHEG 2423
ELECTRICAL MOTORS, GENERATORS AND ALTERNATORS
This course is a study of the operation, design and analysis of various DC motors, AC motors, Power Transformers and AC power generators. This course also covers load requirements and sharing, environmental conditions, national electrical code, generator operation, and electric motor and generator wiring diagram. Theory/Lab. Prerequisite: DHEG 1323.

DHEG 2513
ELECTRICAL DEVICES AND CONTROLS
This course is a comprehensive study of the principles and techniques of electromechanical devices such as switches, circuit protection devices, relays, and solenoids. In addition, the course will cover the national electric code, ladder logic and wiring diagrams. Theory/Lab. Prerequisites: DHEG 1323, DHEG 2423.

DHEG 2523
PROGRAMMABLE LOGIC CONTROLLERS (PLC)
This course is a study of PLC programming, PLC ladder logic diagrams, sensor input, output, control devices, rack configuration and programming rungs with addresses. PLC configuration and troubleshooting techniques are also covered. Theory/Lab. Prerequisites: DHEG 1323, DHEG 2423.
DHEG 2610
INTERNSHIP II
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing and have successfully completed all required Natural Gas, and Arts and Sciences courses. Exceptions only with written approval of Natural Gas Compression Faculty and HEVi program chair.

DHEG 2623
INSTRUMENTATION AND CONTROLS
This course is the study of basics of pneumatics, electrical analog and digital modes of control; and hands-on practical exercises in calibrating, tuning, aligning, and troubleshooting. Data acquisition and data communications are also included. Theory/Lab. Prerequisites: DHEG 2513.

DHEG 2633
GAS COMPRESSION CAPSTONE II
This course includes an applied research project identified during internships, as a work-based problem in need of improvement. Research could include improvements in; diagnostic, service, and maintenance processes, technical support systems, sales, inventory control, cataloging systems, customer service, etc. The theory and application of equipment used in the conditioning of natural gas in gathering systems which will include separators, dehydration units, and chemical treatment units will be studied. The theory and application of equipment used in a natural gas processing plant. Students will take a post-test to determine competency gain in their technical area. Theory/Lab. Prerequisites: DHEG 2513, DHEG 2523.

DIESEL & HEAVY EQUIPMENT TECHNOLOGY - Komatsu (DHEK)

DHEK 1104
KOMATSU GENERAL BASICS
This course is a study of Metric and English precision measurement, tool and fastener identification and use, personal safety, equipment safety and shop safety. The course is designed to acquaint students with the federal safety regulations relating to maintenance safety: EPA, OSHA, Hazardous Materials and Waste. This course will include a review of the OSU Institute of Technology Student Handbook and discussions of class, lab and internship policies and procedures. This is the Career Cornerstone course and will include a technical pre-test, an introduction to Komatsu history, career exploration and information for the student’s Career Passport. Theory/Lab.

DHEK 1124
KOMATSU PARTS AND SERVICE PUBLICATIONS
This course explains the purpose and use of Komatsu Publications including operations manuals, maintenance manual, reusability guides, service management publications, microfiche and computer based CSS and CARE. Students will become familiar with Komatsu terminology, machine and engine nomenclature and the part numbering system. Students will practice locating information using Komatsu publications and complete service reports, pre-delivery reports and receiving reports. An introduction to customer service skills is included. Theory/Lab.

DHEK 1143
KOMATSU INTERNSHIP I
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned during their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must have a valid driver’s license, be in good academic standing and have successfully completed required core courses: DHEK 1104, DHEK 1124.

DHEK 1216
KOMATSU ENGINES AND FUEL SYSTEMS
This course is a study of the operation, maintenance and repair of engines and related fuel systems used in Komatsu equipment. The course presents terminology, concepts and techniques needed to properly diagnose and repair engines. This course emphasizes the rebuilding procedures and testing of engines and fuel systems. It includes cleaning, inspection, measurement, troubleshooting techniques, tune-up procedures, and failure analysis. The proper usage of tools, precision measurement devices, safety, and service publications is stressed. Theory/Lab. Prerequisites: DHEK 1104, DHEK 1124.

DHEK 1243
KOMATSU INTERNSHIP II
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned during their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by
industry and school representatives. Lab. Prerequisites:
Student must have a valid driver’s license, be in good
academic standing and have successfully completed
required core course: DHEK 1216.

DHEK 1323
KOMATSU BASIC HYDRAULICS
This course is a study of the fundamentals, theory and
application of mobile hydraulic principles. Students will
locate and identify machine components from schematics,
draw and read schematics, identify fittings, seals and
components used in hydraulic systems on Komatsu
equipment. Pascal’s Law will be used to calculate energy-
work-power relationships. Hydraulic principles and
operation of pumps, control valves, actuators, fluid
conditioners used on Komatsu equipment will be covered.
Failure analysis, diagnostics and reconditioning of
hydraulic components are also included. Theory/Lab.
Prerequisite: DHEK 1216.

DHEK 1333
KOMATSU BASIC ELECTRICAL SYSTEMS
This course is an introductory study of electricity and
electrical components and circuits. The course introduces
the student to electrical principles, electrical and electronic
diagnostic tools. Students will use OHM’s Law to calculate
volts, amps and ohms within series and parallel circuits,
interpret and draw schematics using common electrical
symbols. Students will locate and identify machine
components using schematics, diagnose and repair wiring
circuits, starting and charging system faults. Theory/Lab.
Prerequisite: DHEK 1216.

DHEK 1343
KOMATSU INTERNSHIP III
An internship is a cooperative agreement between industry
and education which allows students to utilize and refine
skills previously learned during their educational process.
All work is to be performed in accordance with industry
standards and guidelines and will be supervised by
industry and school representatives. Lab. Prerequisites:
Student must have a valid driver’s license, be in good
academic standing and have successfully completed
required core courses: DHEK 1216, DHEK 1323.

DHEK 2416
KOMATSU WHEEL LOADERS
This course is a study of the structure and function of
Komatsu wheel loaders. Students will identify and locate
power train and hydraulic components, troubleshoot torque
converter, transmission and hydraulic systems. This course
examines the application, operation, maintenance and
troubleshooting of the components in Komatsu wheel
loader. Students learn components and theory of operation
as well as disassembly and assembly techniques. Students
will diagnose and repair differentials, brakes and planetary
drives. Repair procedures on the articulated joint. Hydraulic
systems will be reviewed with emphasis on the steering
system. Student will study how to use test results for
diagnoses purposes. Students will use Komatsu
publications to determine which attachments could be used
for special applications. Students will use PM Clinic Test
Kit. Theory/Lab. Prerequisites: DHEK 1216, DHEK 1323,
DHEK1333.

DHEK 2443
KOMATSU INTERNSHIP IV
An internship is a cooperative agreement between industry
and education which allows students to utilize and refine
skills previously learned during their educational process.
All work is to be performed in accordance with industry
standards and guidelines and will be supervised by
industry and school representatives. Lab. Prerequisites:
Student must have a valid driver’s license, be in good
academic standing and have successfully completed
required core course: DHEK 2516.

DHEK 2516
KOMATSU HYDRAULIC EXCAVATORS
This course is a basic study of the structure and function of
Komatsu designed hydraulic excavators. This course
requires the student to select and use the correct Komatsu
troubleshooting charts for diagnose and repair of electronic
system; also, test and adjust hydraulic controlling
components and engine systems. Students will identify,
locate and troubleshoot electronic sensors and switches.
Students will use onboard monitors for diagnostic
purposes; learn the proper use of Komatsu Electrical “T”
Adapter Kits for use with digital volt/ohm meters; and use
electrical repair kits and crimper tools. Students will also
use Komatsu publications to determine which attachments
could be used for special applications, and study how to
use test results for diagnoses purposes. Theory/Lab.
Prerequisite: DHEK 2416.

DHEK 2543
KOMATSU INTERNSHIP V
An internship is a cooperative agreement between industry
and education which allows students to utilize and refine
skills previously learned during their educational process.
All work is to be performed in accordance with industry
standards and guidelines and will be supervised by
industry and school representatives. Lab. Prerequisites:
Student must have a valid driver’s license, be in good
academic standing and have successfully completed required core course: DHEK 2416.

DHEK 2626
KOMATSU CAPSTONE
This course includes an applied research project identified during internships as a work based problem in need of improvement. Research could include improvements in diagnostics, service and maintenance processes, technical support systems, etc. The technical areas of study include the evolution of Komatsu crawler tractor design, including structure and function. Students will identify and locate power train and hydraulic components, troubleshoot and adjust damper, torque converter and transmission. Students will diagnose, service and repair differentials, final drives and steering brakes, controls and linkages; remove, repair and install powerpack; identify, evaluate, service, repair and adjust undercarriage components; study the wear characteristics of undercarriage components; evaluate competitive track design. Before going on their final internship, students will participate in a post-test to determine technical competency gain. Theory/Lab. Prerequisite: DHEK 2416.

DHEK 2653
VEHICLE AIR CONDITIONING SYSTEMS
This course applies the basics of compression refrigeration systems to cars, trucks, and mobile equipment. The use of hand tools and other specialized air conditioning/refrigeration tools will be emphasized in the laboratory, as well as identification of sealed system components and their function, and system maintenance and repair. Theory/Lab. Prerequisites: DHEK 1323, DHEK 2433.

DIESEL & HEAVY EQUIPMENT TECHNOLOGY - MHC Kenworth Truck Technology (DHEM)

DHEM 1133
INTERNSHIP I
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned during their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing having a minimum of a 2.0 GPA.

DHEM 1134
PREVENTATIVE AND PREDICTIVE MAINTENANCE
This course will include a review of pre-delivery, preventive maintenance (PM), commercial vehicle inspection program (CVIP), and the responsibilities of the service technician to ensure that all PM items are performed to a benchmark standards. Students will review PM standards established by the Commercial Motor Vehicle Safety Act (CMVSA); American Standard Inspection Procedures for Motor vehicles, Trailers, and Semi-Trailers operated on Public Highways (ANSI); the National Highway Traffic Safety Administration (NHTSA); and the Commercial Vehicle Safety Alliance (CVSA) “Vehicle Out-of-Service Criteria”. Students will perform walk-around inspections; A, B, C, and D inspections; trailer inspections, pre-delivery inspections and test coolant; and learn proper disposal methods for used oil, filters, coolant, batteries, etc. Theory/Lab.

DHEM 1154
MAINTENANCE FUNDAMENTALS
This course introduces skills and knowledge required by all service technicians including precision measurement, safety regulation compliance, lifting and blocking, torque wrench use, Kenworth product identification, and service literature usage. This is the career cornerstone course which will include a review of the OSU Institute of Technology Handbook, a technical pre-test, development of the career passport, and career exploration. Theory/Lab.

DHEM 1233
INTERNSHIP II
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned during their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing having a minimum of a 2.0 GPA.

DHEM 1243
CHASSIS, STEERING AND SUSPENSION
This course is an introduction to vehicle chassis frames, drive shafts, various suspension systems, truck steering components, and truck and trailer alignment. Students will study frame design, frame damage, alignment and repair, drive shaft construction, arrangements proper phasing, drive shaft inspection and servicing, vibration diagnosis and u-joint replacement. Students will study the maintenance, repair, adjustments and alignment of common truck and trailer suspension systems. Truck
steering components, basic alignment procedures, servicing and diagnostics will also be studied. Theory/Lab.

DHEM 1253
ELECTRICAL CIRCUITS, CHARGING AND STARTING SYSTEMS DIAGNOSTICS AND REPAIR
This course introduces electrical laws and principles. It includes the use of digital volt/ohm meters, amp probes, wiring diagrams and electrical schematics, wire and connector repair methods, and semiconductors. Students will learn to diagnose, maintain, and repair electrical circuits, charging circuits, and starting circuits. Emphasis is on diagnostics, preventive maintenance, and correct repair procedures. Theory/Lab.

DHEM 1323
TRANSMISSION SYSTEMS
This course is an introduction to clutches, manual transmissions, drivelines and differentials. Emphasis is on power flow, diagnostics, disassembly, inspection, failure analysis, repair and assembly. Theory/Lab.

DHEM 1333
INTERNSHIP III
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned during their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisite: Student must be in good academic standing having a minimum of a 2.0 GPA.

DHEM 1343
BRAKE SYSTEMS
This course is a review of hydraulic and pneumatic principles as they apply to braking systems including anti-skid and traction control. Maintenance and repair of the air brake systems components and medium duty hydraulic brake system components is covered. Students will perform foundation brake maintenance. Theory/Lab.

DHEM 2433
INTERNSHIP IV
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned during their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisite: Student must be in good academic standing having a minimum of a 2.0 GPA.

DHEM 2444
ELECTRONIC ENGINE INTERFACE
This course is a study of the operation, diagnosis, maintenance and repair of electronic fuel management and other computer controlled systems. Students are trained to use diagnostic equipment to determine the condition of electronic components including troubleshooting and performance aspects of engines and other computer controlled systems. Theory/Lab.

DHEM 2452
AIR CONDITIONING SYSTEMS
This course is a study of the theory, application, and repair of mobile air conditioning and refrigeration systems. Emphasis is on preventive maintenance, design, failure analysis, troubleshooting, proper repair and refrigerant recovery recycle methods. Theory/Lab.

DHEM 2523
DIESEL ENGINE AND FUEL SYSTEMS
This course is an introduction to diesel engine terminology, operating principles and maintenance. Engine systems are examined along with diagnostic, repair, and maintenance procedures. Students will study fuel injection systems used by major diesel engine manufacturers. The function and operation of various types of fuel systems, fuel system maintenance and basic troubleshooting is covered. Theory/Lab.

DHEM 2533
DIESEL ENGINE OVERHAUL TECHNIQUES
This course emphasizes the application of repair procedures for diesel engines. Disassembly, parts evaluation and reusability, failure analysis, assembly, tune up procedures and troubleshooting is covered. Safety, special tool use, and use of service publications are stressed throughout the course. Theory/Lab.

DHEM 2543
INTERNSHIP V
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned during their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisite: Student must be in good academic standing having a minimum of a 2.0 GPA.

DHEM 2616
CAPSTONE
This course includes an applied research project identified
during internships, as a work-based problem in need of improvement. Research could include improvements in diagnostic, service, and maintenance processes; technical support systems; customer service; etc. Advanced application of diagnostics principles relating to engine, power train, electrical systems, electronics, brakes and other truck systems, and development of preventive maintenance systems will be studied. Theory/Lab.

DIESEL & HEAVY EQUIPMENT TECHNOLOGY - Southwestern Association Industrial & Farm Equipment (DHES)

DHES 1113
INTERNSHIP I
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must have a valid driver’s license, be in good academic standing, and have successfully completed required core courses.

DHES 1123
FUNDAMENTALS OF MAINTENANCE
This course introduces skills and knowledge required by all service technicians including: precision measurement; environmental and safety regulation compliance; safety and personal protection equipment; fastener identification; hand and power tool identification, use and safety; lifting and blocking; torque wrench use; tapping, threading, and thread inserts. Students will receive forklift operation training and testing. Students will demonstrate the ability to follow written instructions, complete business forms and perform basic math skills. This course will include a review of the OSU-Okmulgee Student Rights and Responsibilities. Theory/Lab.

DHES 1133
PRE DELIVERY & PREVENTIVE MAINTENANCE
This course will include a review of pre-delivery, preventive maintenance (PM) and the responsibilities of the service technician to ensure that all PM items are performed to a benchmark standard. Students will review pre-delivery and PM standards established by equipment manufacturers and associations. Students will use manufacturer service and maintenance software and literature to determine proper pre-delivery and PM procedures as well as oil sampling etc. They will perform walk around inspections, pre-delivery inspections, test coolant, and learn proper disposal methods for used oil, filters, coolant, batteries, etc. This course will introduce correct machine operation, specifically related to safety precautions listed in the operators manual as well as regulations for safe machine transportation to include tie down, flagging, permitting and weight distribution. Theory/Lab.

DHES 1143
PRINCIPLES OF GPS APPLICATIONS
This course provides an explanation of how the GPS system works, sources of errors, and methods used for improving the basic accuracy of the system, including Differential GPS. The wide range of GPS agricultural applications are introduced and the main types and features of various GPS receivers are discussed. Students will identify proper manufacturer terminology used in GPS applications. Theory/Lab.

DHES 1133
PRE DELIVERY & PREVENTIVE MAINTENANCE
This course will include a review of pre-delivery, preventive maintenance (PM) and the responsibilities of the service technician to ensure that all PM items are performed to a benchmark standard. Students will review pre-delivery and PM standards established by equipment manufacturers and associations. Students will use manufacturer service and maintenance software and literature to determine proper pre-delivery and PM procedures as well as oil sampling etc. They will perform walk around inspections, pre-delivery inspections, test coolant, and learn proper disposal methods for used oil, filters, coolant, batteries, etc. This course will introduce correct machine operation, specifically related to safety precautions listed in the operators manual as well as regulations for safe machine transportation to include tie down, flagging, permitting and weight distribution. Theory/Lab.

DHES 1213
INTERNSHIP II
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must have a valid driver’s license, be in good academic standing and have successfully completed required core courses: DHES 1133.
DHES 1223
WIRING CIRCUITS, CHARGING AND STARTING SYSTEMS
This course introduces electrical laws and principles. It includes the use of digital volt/ohm meters, amp probes, wiring diagrams and electrical schematics, wire and connector repair methods, and semiconductors. Students will learn to diagnose, maintain, and repair electrical circuits, charging circuits, and starting circuits. Emphasis is on diagnostics, preventive maintenance, and correct repair procedures. Theory/Lab.

DHES 1233
HYDRAULIC PRINCIPLES
This course is a study of the fundamentals, theory and application of mobile hydraulic principles. Students will locate and identify machine components from schematics; draw and read schematics; and identify fittings, seals and components used in hydraulic systems on agricultural and construction equipment. Pascal’s Law will be used to calculate energy-work-power relationships. Hydraulic principles and operation of pumps, control valves, actuators, fluid conditioners used on modern equipment will be covered. Failure analysis, diagnostics and reconditioning of hydraulic components are also included. Theory/Lab.

DHES 1313
INTERNSHIP III
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must have a valid driver’s license, be in good academic standing and have successfully completed required core courses: DHES 1223, DHES 1233.

DHES 1323
ELECTRONIC SYSTEMS
This course requires the student to use diagnostic testing as specified by manufacturer software, literature, troubleshooting charts and wiring diagrams to complete required service, repair, or replacement procedures on agricultural and construction equipment electronic systems. Students will identify, locate, service, test and repair connectors, sensors, actuators, switches and control modules. Students will use onboard diagnostic systems, T adapter Kits, Digital Volt/Ohm Meters, electrical repair kits, crimper tools and the EST service tool. Theory/Lab. Prerequisite: DHES 1223.

DHES 1333
HYDRAULIC SYSTEMS
This course is designed to teach the systems operation and the testing, adjusting, maintenance and repair procedures for pilot operated hydraulic systems, load sensing pressure compensated hydraulic systems, electro-hydraulic systems and hydrostatic systems specific to agricultural and construction equipment. Students will identify system components and be able to discuss their operation and application. Students will identify different systems and troubleshoot live units, trace the oil flow through the systems and state the systems operation and application. Students will use onboard diagnostic systems, T adapter Kits, Digital Volt/Ohm Meters, flow meters, pressure gauges, and hydraulic schematics tools to diagnose hydraulic system malfunctions. Theory/Lab. Prerequisite: DHES 1233.

DHES 2413
INTERNSHIP IV
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must have a valid driver’s license, be in good academic standing and have successfully completed required core courses.

DHES 2416
ENGINES AND FUEL SYSTEMS
This course is an introduction to engine terminology, operating principles and maintenance. Engine systems are examined along with diagnostic, repair and maintenance procedures. The student will be given an understanding of the theory, operation, troubleshooting and repair of diesel engine intake, exhaust and fuel systems used in equipment. The function and operation of various types of fuel systems, fuel system maintenance and basic troubleshooting is covered. This course emphasizes the application of repair procedures for engines. Disassembly, parts evaluation and reusability, failure analysis, assembly, tune-up procedures, and troubleshooting are covered along with the proper use of the EST service tool. Safety, special tool use, and use of service publications are stressed throughout the course. Theory/Lab.

DHES 2512
MOBILE AIR CONDITIONING
This course is a study of the theory, application, and repair of mobile air conditioning and refrigeration systems.
Emphasis is on preventive maintenance, design, failure analysis, troubleshooting, proper repair and refrigerant recovery recycle methods. Theory/Lab. Prerequisite: DHES 1223.

DHES 2513
INTERNSHIP V
An internship is a cooperative agreement between industry and education, which allow students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must have a valid driver’s license, be in good academic standing, and have successfully completed required core courses.

DHES 2514
POWER TRAIN
This course will discuss the basic components, operations, maintenance, diagnostics with the EST service tool and the repair of power train systems used in agricultural and construction equipment using proper special tooling. Included will be basic components, couplings, clutches, manual transmissions, torque converters, and power shift transmissions, hydrostatic transmissions, differentials, brakes, and final drives. Hydraulically driven machines will also be included. Theory/Lab.

DHES 2603
YIELD MONITORING, VARIABLE RATE AND AUTO STEER DIAGNOSTICS
This course summarizes how GPS integrates with guidance systems, yield monitoring systems, and variable rate technologies. It provides an explanation of the components of yield monitoring, variable rate, and auto steer systems along with the integration of machine electronics and hydraulics into those systems. System design, principles of operation, sensors, calibration, and system diagnostics will be studied. Theory/Lab.

DHES 2623
PRECISION AG AND CONSTRUCTION
This course will provide an introduction to the theory of Global Positioning System (GPS), Differential GPS (DGPS), Geographical Information Systems (GIS), real-time carrier phase differential called Real-Time Kinematics (RTK), auto steer, grade control, and remote sensing in relation to Ag and construction equipment. Emphasis will be on installation, calibration, maintenance, operation of and troubleshooting this equipment on the machine. Theory/Lab.

DHES 2633
CAPSTONE
This course includes an applied research project identified during internships, as a work-based problem in need of improvement. Research could include improvements in diagnostic, service, and maintenance processes, technical support systems, customer service, etc. Advanced application of diagnostics principles relating to engine, power train, electrical systems, electronics, hydraulics, brakes and other equipment systems, and development of preventive maintenance systems are included. Theory/Lab.

DIESEL & HEAVY EQUIPMENT TECHNOLOGY - Manitowoc LIFT (DHEW)

DHEW 1114
FUNDAMENTALS OF MAINTENANCE
This course introduces skills and knowledge required by all service technicians including: precision measurement; environmental and safety regulation compliance; safety and personal protection equipment; fastener identification; hand and power tool identification, use and safety; lifting and blocking; torque wrench use; tapping, threading, and thread inserts. Students will receive forklift operation training and testing. This course will include a review of the OSU Institute of Technology Student Rights and Responsibilities. Students will successfully complete CraneCARE E-Training Course: Industrial Mechanical. Theory/Lab.

DHEW 1122
MANITOWOC PARTS AND SERVICE PUBLICATIONS
This course explains the purpose and use of Grove, GMK, and National and Publications including parts manuals, operator manuals, service manuals, and computer based CAPX, GPX2, National Parts Express, and D3 parts systems. Students will become familiar with the product line, terminology, and nomenclature. Students will practice locating information using the appropriate publications, machine delivery forms, maintenance inspection forms, explanation of the warranty policy, and a review of what is available on the manufacturer web site. Students will be introduced to the CraneCARE program, policies and procedures, marketing programs, EnCore and an introduction to customer service skills is included. Students will successfully complete CraneCARE E-Training course: Intro to CraneCARE Parts Theory/Lab.

DHEW 1133
INTERNSHIP I
An internship is a cooperative agreement between industry
and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Prerequisites: Student must have a valid driver's license, be in good academic standing and have successfully completed all required core courses.

DHEW 1212
ENGINE PRINCIPLES
The engine principles course is designed to help students understand the fundamentals of Diesel Engines. Begin by learning combustion fundamental and a brief history of diesel engines. Identify components of a typical diesel engine and how these components function and interact with each other. Understand intake and exhaust systems, and study the components of the diesel fuel system. Learn about engine lubrication and cooling systems. Emphasis will be on engine servicing, maintenance, and tune-up procedures. Students will be introduced to engine ECMs. Students will successfully complete, CraneCARE E-Training Course: Diesel Engines. Theory/Lab.

DHEW 1224
CRANE TERMINOLOGY AND OPERATION
This course assumes no basic service and operational knowledge of Grove Rough Terrain, Truck Mounted and All Terrain crane systems. The course includes an in-depth review of crane terminology and technologies. Grove domestic load charts are used to expose the students to how load charts are constructed and how to properly read and interpret them. After completion of the domestic built cranes, the study will move forward into the GMK product line. Students will be exposed to the GMK style load charts. Load moment indicating systems operation and function will be covered with an emphasis on proper use, programming, and how the system functions. Information on wire rope construction, proper maintenance, inspection and installation is included. The final portion of the course will be focused on proper use of Machine Delivery Forms, Maintenance Inspection Forms and ANSI/OSHA standards. Students must achieve an 80% or above on the OSUIT course and the Manitowoc CraneCARE Factory exam to receive a Completion Certificate for this Factory Equivalent course. Theory/Lab.

DHEW 1233
INTERNSHIP II
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Prerequisites: Student must have a valid driver’s license, be in good academic standing and have successfully completed all required core courses.

DHEW 1313
BASIC FLUID POWER
This course will introduce the laws and principles of fluid mechanics, both hydraulics and pneumatics. Students will locate and identify machine components from schematics, draw and read schematics, and identify fittings, seals and components used in hydraulic and pneumatic systems on mobile equipment. The characteristics of fluids that enable it to use flow and pressure to transfer energy will be studied. Pascals Law will be used to calculate force pressure area relationships. Students will also calculate energy-work-power relationships. Students will disassemble, inspect and reassemble common fluid system components and construct and test simple fluid power circuits. Students will successfully complete CraneCARE E-Training Course, Mobile Hydraulics. Theory/Lab.

DHEW 1324
BASIC ELECTRICAL SYSTEMS
This course covers safety and the basic principles of AC/DC electrical circuits. Subjects to be included: operating characteristics of the circuits, various components, electrical laws, series circuits, parallel circuits, series-parallel circuits, magnetism, impedance, and resonance. The operation of electrical components such as switches, relays, contactors, starter boxes, transformers, relays, timers, capacitors and motor starting relays will also be examined. Students will locate and identify components from crane schematics. Schematics will be used to assure students understand the function of crane electrical systems and that schematics are a basis for troubleshooting and repairs. Wiring repairs and evaluation of starting system, charging system and batteries will be emphasized. Students will successfully complete CraneCARE E-Training Course: Mobile Electrical. Theory/Lab.

DHEW 1333
INTERNSHIP III
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All
work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Prerequisites: Student must have a valid driver’s license, be in good academic standing and have successfully completed all required core courses.

DHEW 1343
POWER TRAIN
This course is an introduction to the components, function, operation and repair of power train systems used in National, Grove, and GMK Cranes. Included will be basic components, clutches, manual transmissions, torque converters, automatic transmissions, PTOs, drive lines, differentials and axles. Emphasis is on power flow, diagnostics, disassembly, inspection, failure analysis, repair and assembly. Theory/Lab.

DHEW 2422
VEHICLE AIR CONDITIONING SYSTEMS
This course is a study of the theory, application, and repair of mobile air conditioning and refrigeration systems. Emphasis is on preventive maintenance, design, failure analysis, troubleshooting, proper repair and refrigerant recovery recycle methods. This course will also prepare students for EPA certification exam. Theory/Lab.

DHEW 2413
VEHICLE BRAKES, STEERING, AND CHASSIS
This course is a review of hydraulic and pneumatic principles as they apply to braking systems on National, Grove, and GMK equipment. Maintenance and repair of the brake systems components are covered. Students will test brake valves, perform foundation brake, wheel bearing, and seal maintenance. This course is an introduction to vehicle chassis frames, drive shafts, suspension systems, steering components, and steering alignment. Students will study drive shaft construction, arrangements, phasing, drive shaft inspection and servicing, vibration diagnosis and u-joint replacement. Tire wear patterns will be discussed to help diagnose alignment problems. Students will study the maintenance, repair, adjustments and alignment of suspension systems. Steering components, basic alignment procedures, servicing and diagnostics will also be studied. Students will successfully complete the CraneCARE E-Training Course: Industrial Pneumatics. Theory/Lab.

DHEW 2433
INTERNSHIP IV
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Prerequisites: Student must have a valid driver’s license, be in good academic standing and have successfully completed all required core courses.

DHEW 2523
INTRODUCTION TO CONVENTIONAL AND EPIC CRAWLER CRANE SYSTEMS
This course covers the conventional operational systems of 3900, 4000, and 4100 models. Students will be guided through the pneumatic and hydraulic systems by studying the systems’ schematics. Extensive in-depth sessions on the various machinery trains along with torque converters (Vicon and non-Vicon) will allow technicians to build the necessary system knowledge and confidence to troubleshoot system problems. Specific units include torque converter adjustments, hydraulic and pneumatic symbols, hydraulic systems for fixed and variable displacement pertaining to the 4100 hydraulic boom hoist, pneumatic swing, travel, and boom circuits, and handle functions for boom, hoist, swing, and travel. Also covered, will be adjustments for torque converters, clutches and brakes. The EPIC operational systems of 999 model will be covered. Students will be guided through the electrical and hydraulic systems using systems’ schematics, manuals and hands-on sessions. Study of the machine’s Load Indicator systems will allow students to build the necessary system knowledge and confidence to troubleshoot system problems. Units covered will include 90 Series pump, Central Processing Unit (CPU) and breaking down the swing circuit. Students will distinguish how pressure vs. voltage, electrical and hydraulic systems for fixed and variable displacement pumps and motors are used in the EPIC system. The swing and calibration of the EPIC system will be studied. Theory/Lab.

DHEW 2533
INTERNSHIP V
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Prerequisites: Student must have a valid driver’s license, be in good academic standing and have successfully completed all required core courses.
DHEW 2543
NATIONAL LEVEL I & NATIONAL LEVEL II
The course starts with an in depth review of National boom truck terminology and technologies. National load charts are used to expose the students to how load charts are constructed and how to properly read and interpret them. Load moment indicating systems operation and function are covered with an emphasis on proper use, programming and how these systems function. National hydraulic and electrical systems will expose the students to schematic layout and symbols with focus on individual circuits as to their purpose and function within the overall system. Students gain an understanding of components and systems through the intense study of the system schematics. Programs covering test and troubleshooting procedures will give the students a working knowledge of the systems and the foundation for proper troubleshooting techniques and test procedures. Students must achieve an 80% or above on the OSUIT course and the Manitowoc CraneCARE Factory exams for National Level 1 and National Level 2 to receive a Completion Certificate for these Factory Equivalent courses. Theory/Lab.

DHEW 2553
GROVE LEVEL I & GROVE LEVEL II
This program assumes basic operational knowledge of Grove cranes. It will cover domestic units prior to the introduction of the “E” Series units in 1996. The course begins with a basic review of hydraulic theory, principles and schematics followed by a review of electrical theory and principles along with electrical symbols and schematics. Students will gain an understanding of components and systems through the intense study of system schematics. This gives students a working knowledge of these systems and the foundation for proper troubleshooting techniques and test procedures. Students must achieve an 80% or above on the OSUIT course and the Manitowoc CraneCARE Factory exams for Crane 1 and Crane 2 to receive a Completion Certificate for these Factory Equivalent courses. Theory/Lab.

DHEW 2624
GMK LEVEL I & GMK LEVEL II
The GMK 1 section begins with company and model history. Students will study the basics of GMK nomenclature, site set-up, and safety concerns as well as direct GMK to Grove comparison to better relate European design philosophy to domestic designs. Students will study first generation systems that use hydraulic-over-hydraulic controls and makes extensive use of relay logic architecture. Relay logic circuit training provides students an introduction for learning European design philosophies. Students will study pneumatic, hydraulic and electrical systems, and reading of their related schematic prints. Navigating the “E-lan” electrical prints will also be introduced. Study topics include site set-up safety, using GMK load charts and interpreting the “Remarks” section, calculating outrigger pad pressures, and finally EKS83 and EKS3 set-up and operation instruction.

The GMK 2 section begins with PC skills needed for the crane industry. These second generation machines use electrical over hydraulic controls and make a decreasing use of relay logic architecture by using amplifier boards. The class continues with a full amp board diagnostic labs demonstrating adjustments and tuning techniques. These will give the student a working knowledge of the fully functioning electrical-over-hydraulic controlled GMK crane. Students must demonstrate an intermediate level understanding of load charts calculations; outrigger pad pressures calculations, and EKS83 and EKS3 set-up and programming. The student will then learn EKS3 error code interpretation, operator and service technician EKS3 troubleshooting. . Students must achieve an 80% or above on the OSUIT course and the Manitowoc CraneCARE Factory exams for GMK 1 and GMK 2 to receive a Completion Certificate for these Factory Equivalent courses. A windows based laptop computer is required for this course Theory/Lab.

DHEW 2633
MANITOWOC CAPSTONE
This course may include an applied research project identified during internships, as a work-based problem in need of improvement. Research could include improvements in diagnostic, service, and maintenance processes, technical support systems, customer service, etc. Advanced application of diagnostics principles relating to engine, power train, electrical systems, electronics, hydraulics, brakes and other equipment systems, and development of preventive maintenance systems are included. Students will study latest technologies in engine ECM’s, transmission controls, LMI systems, CraneStar and latest technology changes in crane systems. OSHA annual inspection is reviewed Theory/Lab.
ECONOMICS (ECON)

ECON 2103 (S)
MICROECONOMICS
This course is an introduction to the general concepts of economic reasoning, emphasizing microeconomic theory of the U.S. system. It includes allocation of resources, distribution of final output to the individual, overall functioning of price system and the relationship of price, quantity and profit in a capitalistic market economy. Prerequisite: ECON 2203. Theory.

ECON 2203
MACROECONOMICS
This course provides an introduction to the general concepts of economic reasoning emphasizing macroeconomic theory of the U.S. system. It includes monetary policy, national income and employment, money and banking, economic growth policies and interrelationships with the world economy. Theory. Note: available online.

ELECTRICAL CONSTRUCTION TECHNOLOGY (ECNT)

ECNT 1102
INTRODUCTION TO THE ELECTRICAL TRADES
As an introductory course in electricity, study will target the general concepts, ideas, history and relationships of the electrical trade, including employment opportunities, job descriptions, general safety and standards. Theory. Offered in the fall and spring semesters.

ECNT 1103
DC & AC CIRCUIT ANALYSIS
This course is a study of electricity involving electrical laws, units, components, impedance and magnetism. Theory/Lab.

ECNT 1112
ELECTRICAL SAFETY
A safety course as it relates directly to the electrical industry. Issues of pole safety, truck & driving safety, personal tool safety, grounding, tail board discussions, ladder safety, lifting, lock-off and tag-off procedures. Theory.

ECNT 1233
ELECTRICAL MOTORS AND CONTROLS
An in-depth study of single phase, 3-phase and D.C. motors; stop/start stations; forward and reverse; hard and soft start and ladder diagrams are taught in this course. Theory/Lab. Offered in the spring semester.

ECNT 1253
ELECTRICAL WIRING METHODS I – RESIDENTIAL
This course is an examination, study and implementation of electrical wiring and wiring devices found in various types of residential structures. Study to include National Electrical Code as it applies for these occupancies. Theory/Lab. Offered in the spring semester.

ECNT 1313
NATIONAL ELECTRICAL CODES
An in-depth study of the latest National Electrical Code is taught in this course with emphasis on the total code and the licenses that can be obtained in this state and others. Theory. Prerequisite: ECNT 1253. Offered in the spring semester.

ECNT 2473
ELECTRICAL WIRING METHODS II
Analysis of electric power distribution of transformer secondary systems as it pertains to the construction of commercial installations is the focus of this course and includes feeder and service calculation as required by National Electrical Code. Theory/Lab. Prerequisite: ECNT 1253. Offered in the spring semester.

ECNT 2533
ELECTRICAL WIRING METHODS III
This course includes an in-depth study of hazardous locations, more detailed coverage of branch circuits and their associated calculations, site lighting and industrial light fixtures, lighting protection plus the study of panel board, motor control bus ways and other industrial products and centers, tools. Prerequisites: ECNT 1253, ECNT 2473.

ECNT 2613
PROGRAMMABLE LOGIC CONTROLLER’S (PLC) FOR ELECTRICIANS
Industry has traditionally relied on engineers and instrumentation and control technicians to design, build, operate, maintain, and repair Programmable Logic Controller (PLC) systems. As PLC’s have evolved, many organizations have found it beneficial for other maintenance groups such as electricians and mechanical technicians to help support engineers and I&C technicians in the area of PLC’s. This course is designed for incumbent work force technicians and student technicians that have not traditionally been responsible for PLC systems, but require basic skills and knowledge for entering into PLC
support roles. Focus will be placed on fundamental programming and wiring of PLC systems. Theory/Lab. Prerequisite: ECNT 1233.

ECNT 2616
ELECTRICAL CONSTRUCTION - ELECTRICAL CAPSTONE EXPERIENCE
This Capstone course is an in-depth examination of all studied wiring systems, layouts and characteristics. The use of blueprints to make estimates of materials and labor costs will be stressed. Special emphasis will be placed on integration of all the fundamental and general education classes (i.e. math, English, technical writing). The course will be arranged so the student will have a very good understanding of the electrical contracting business. The National Electrical Code, safety and the electrical methods taught in previous classes will be used throughout the course. The student will complete the exit assessment instrument and other graduation requirements. Theory/Lab. Prerequisites: ECNT 1253, ECNT 2473, ECNT 2533, must have completed one internship, or approval by the Division Chair. Offered in the summer semester.

ECNT 2633
ELECTRICAL CONSTRUCTION ESTIMATING
This course will provide an in-depth examination of wiring systems, layouts and characteristics. The use of blueprints to make estimates of material and labor costs will be stressed and special emphasis will be placed on National Electrical Code standards and safety practices. Theory/Lab. Offered once a year.

ECNT 2806
ELECTRICAL CONSTRUCTION BEGINNING INTERNSHIP
A cooperative agreement between industry and education, which allows the student to utilize and define skills learned in their educational process. All work is to be performed in accordance with the industry standards and will be supervised by an electrical utility journeyman and school representative. Lab. Prerequisites: Division Chair approval and an overall GPA of 2.5 or greater.

ECNT 2906
ELECTRICAL CONSTRUCTION ADVANCED INTERNSHIP
A cooperative agreement between industry and education, which allows the student to utilize and define skills learned in their educational process. All work is to be performed in accordance with the industry standards and will be supervised by an electrical utility journeyman and school representative. Lab. Prerequisites: ECNT 2516, ECNT 2626, departmental approval, and an overall GPA of 2.5 or greater.

ENGLISH (ENGL)

ENGL 0143
ENGLISH FUNDAMENTALS
This course reviews the fundamentals of English, including grammar, standard usage, spelling, punctuation, and basic writing skills. This is a competency-based course and the student’s COMPASS test scores determine placement. This course prepares students for entry into a college-level English course and does not count toward graduation or any degree program. Theory.

ENGL 1033
TECHNICAL WRITING I
This course focuses on the writing process and strategies for improving writing. The emphasis is on clear, concise writing for specific audiences and for specific purposes. The assignments and activities reflect real-world work situations and writing requirements such as letters and memoranda. Theory. Note: available online.

ENGL 1113
FRESHMAN COMPOSITION I
This course focuses on the writing process and strategies for improving writing. The assignments reflect the fundamentals of expository writing with an emphasis on structure, organization and style. The course offers a brief review of grammar and punctuation, a study of sentence structure and practice writing paragraphs and compositions. Theory. Note: available online.

ENGL 1213
FRESHMAN COMPOSITION II
This course continues to focus on patterns of developmental and expository writing, seeking to hone the writing skills learned in English 1113, as well as research skills and persuasive writing. The emphasis is on technique, style and form. Theory. Prerequisite: ENGL 1113 or Division Chair approval. Note: available online.

ENGL 2033
TECHNICAL WRITING II
This course continues the emphasis on the writing process taught in ENGL 1033 and includes a brief review of composition techniques. The assignments include various types of technical reports with emphasis on preparation, data collection and research, organization, style, format, graphics, technical descriptions and formal report writing.
ENGL 2113
CREATIVE WRITING
This course focuses on improving students' abilities to develop creative writings while learning techniques for reading like writers. Assignments reflect the vocabulary of writers, and class is structured primarily as a workshop for students to read and critique their peers' writing. The course offers instruction for invention, genre exploration, revision, and appropriate etiquette in a workshop setting. Assignments require the use of microcomputers and word processing software.

ENGL 2413 (D, H)
INTRODUCTION TO LITERATURE
This course provides a study in fiction, drama/film, and poetry. Written critical exercises and discussion. Theory. Note: available online.

ENGL 2543 (H, I)
SURVEY OF ENGLISH LITERATURE I
Selected reading of major English writers to 1800. A survey of key works, authors, genres, literary history and criticism. Theory.

ENGL 2653 (H, I)
SURVEY OF ENGLISH LITERATURE II
Selected reading of major English writers from 1800 to present. A survey of key works, authors, genres, literary history and criticism. Theory.

ENGL 2773 (D, H)
SURVEY OF AMERICAN LITERATURE I
An introduction to the works of the chief American writers from colonial days through the Civil War, with attention both to the historical context and to selected works chosen for close analysis. Theory. Note: available online.

ENGL 2883 (D, H)
SURVEY OF AMERICAN LITERATURE II
An introduction to the works of the chief American writers from the Civil War to the present, with attention both to the historical context and to selected works chosen for close analysis. Theory. Note: available online.

ENGL 3323
TECHNICAL WRITING III
This course reviews the basics of technical writing and recognizable workplace formats. The course also focuses on the ethical and accurate transfer of information to technical and non-technical audiences, problem solving strategies, critical thinking skills, revision and editing strategies, as well as using visual aids to convey accurate information. Theory. Prerequisites: ENGL 1213 or ENGL 2033; or Division Chair approval.

ENGINEERING TECHNOLOGY (ETD)

ETD 1101
SAFETY APPLICATIONS
Students will learn OSHA regulations and practice safety procedures in the following areas: hazard recognition and control, materials handling, flammables, fire protection, electrical safety, machine guarding, confined spaces, personal protective equipment, and accident investigation and reporting, lock out tag out, and general first aid. Theory.

ETD 1102
BASIC MECHANICS
This course introduces students to general shop safety and practices, proper use and care of general hand tools, soldering techniques, applications of precision measuring and layout, and proper use and care of general power tools such as drill presses and grinders. Theory/Lab.

ETD 2090 (1-9 CREDIT HOURS)
SPECIAL PROJECTS
This is an individual study course under the supervision of an instructor. Projects may be undertaken in any area of the engineering technology field with credit hours determined by the level and amount of effort required. Theory/Lab.

ETD 2411
EMPLOYMENT EXPLORATION
Students will develop effective résumé and cover letter writing skills as well as interview techniques. This course is intended to assist students with focusing on their search for full-time employment (AAS students) or internship opportunities (BT students). Theory/Lab.

ETD 3093
SPECIAL PROJECTS
This course is designed to allow students an opportunity to gain fundamental knowledge and skill in the area of gas and flow measurement. Focus will be placed on the design and implementation of a gas flow loop that includes devices such as pressure, flow, temperature transmitters, compressors, gas chromatographs and related equipment. Theory/Lab.
ETD 4414
CAPSTONE
The Capstone course is the culminating student experience in Engineering Technologies. The course utilizes applied research projects identified during student internships. Students will work in teams to investigate alternative for real problems which have the potential to increase employer productivity. The student teams will analyze potential, design alternative solutions, test the most viable alternative, interpret the findings, document the best practices and promote deployment back to employers. Faculty assists students in the design and conduct of their applied research efforts. Theory/Lab. Prerequisites: Taken in the semester of graduation or the Division Chair’s approval and the student must have a minimum 2.0 retention GPA.

ELECTRICAL AND ELECTRONICS TECHNOLOGY (ETDE)

ETDE 1133
INTRODUCTION TO ELECTRICAL/ELECTRONICS
This course will be a general survey of the Electrical/Electronics technologies career cluster with an emphasis upon the general terminology, tools and equipment, safety procedures, and general occupational outlook. Through authentic contextual based projects this class will develop practical wiring skills, a basic understanding of series and parallel circuits, general component recognition and understanding, and basic soldering procedures. This course will serve as an introduction to industrial electrical controls. Theory/Lab. Co-requisite: MATH 1513.

ETDE 1243
DC ELECTRONICS AND METROLOGY
Students learn to apply DC principles and analysis to solve parameters of electronic circuits and related systems. Measurements will be made with volt meters, amp meters, and ohm meters. Students are introduced to the science of measurements; to help master metrology learners complete a course project related to measurements. Students learn to draw and interpret electrical/electronic symbols, diagrams and schematics in accordance with industry standards. Through application, analysis, and presentations each learner will demonstrate mastery of basic electrical/electronic principles and technical reporting. Theory/Lab. Prerequisite: MATH 1513.

ETDE 1263
AC ELECTRONIC AND PHOTONICS
Students learn to apply AC principles and analysis to solve parameters of electronic circuits and related systems. Wavelength and phase angles are introduced as a more complex form of signal analysis. As an introduction to Photonics, students learn optoelectronic sources and detectors that operate in the UV, IR, and visible wavelengths. Measurements are made with multimeters, oscilloscopes, frequency counters and other test equipment. Students learn to draw and interpret electrical/electronic symbols, diagrams and schematics in accordance with industry standards. Through application and analysis each learner will demonstrate mastery of basic electrical/electronic practices as well as construct and troubleshoot circuits and complete a course project with lasers. Theory/Lab. Prerequisite: MATH 1513, ETDE 1243. Co-requisite: MATH 1613.

ETDE 1333
INDUSTRIAL ELECTRICAL SYSTEMS
This course is designed to give the student a broad overview and exposure to a variety of electrical and electronic principles and practices. The course will be a combination of classroom activities, study and research, and hands on applications so that the student has a clear understand of the topics as well as the ability to manipulate appropriate tools, software, and equipment. Theory/Lab.

ETDE 1343
MOTORS AND CONTROLS
This course introduces the fundamental concepts of electrical motors and associated electrical controls. Topics include ladder diagrams, schematic diagrams, contactors, motor starters, control relays, timing relays, pilot control devices, AC/DC motors and related control devices. Upon completion, students should be able to properly select, install and troubleshoot motors and associated control systems. Theory/Lab.

ETDE 1363
ELECTRONIC DEVICES & STANDARDS
Students learn to identify, specify, and troubleshoot electronic devices used in power supplies, amplifiers, oscillators, sensor circuits, electro-optical, and industrial control circuits. Students learn how to research and use manufacturer specification sheets. Device measurements are made with multimeters, oscilloscopes, frequency counters and other test equipment. Students are introduced to standards development for measurements and devices. An overview of professional organizations such as American National Standards Institute, International Standards Organization, and National Institute of Standards and Technology is included. Students complete a course project integrating devices into a
working system. Technical reports and presentations are vital components of the course. Theory/Lab. Prerequisites: ETDE 1243 and ETDE 1263.

ETDE 1373
DIGITAL SYSTEMS & MICROCONTROLLERS
This course introduces digital logic, number systems, and circuits as they relate to computing, memory, and control systems. Topics include numbering systems, logic gates, flip-flops, counters, shift registers, latches, decoders, multiplexers, interfaces, displays, I/O, and timing circuits. Students learn how to research and use manufacturer specification sheets. Students learn computer communication systems, communication standards, and troubleshooting. Microprocessors, microcontrollers, and embedded systems are introduced. Students complete a course project using a microcontroller that demonstrates hardware control and software programming. Technical reports and presentations are vital components of the course. Theory/Lab. Prerequisite: ETDE 1363.

ETDE 2102
MAINTENANCE THEORY AND APPLICATION
The purpose of this training is to inject, at an early stage in training, that Maintenance is an important function that is critical to the business’ success. Next, is to educate the student in an understanding of the typical categories that Maintenance organizations fall into and the importance of each. Student will learn the tools to critically examine each challenge and troubleshoot to conclusion. Theory.

ETDE 2112
MECHANICAL SYSTEMS & EQUIPMENT
This course will be an introduction to basic mechanical devices and systems. Topics will include instruction on mechanical components and equipment such as gears, belts, pulleys, and bearings in mechanical systems. This course will also provide instruction in fundamental concepts applicable to the mechanics of industrial production equipment, and teaches basic industrial application of mechanical principles with emphasis on power transmission. Instruction will also be provided to include: mechanical tools, fasteners, basic mechanics, lubrication, bearings, packing, seals, and power transmission equipment. Theory/Lab.

ETDE 2113
INTRODUCTION TO PLCs
This is an introductory course in programmable logic controllers (PLCs) and their applications. Topics include ladder logic diagrams, input and output modules, power supplies, surge protection, selection and installation of controllers, and interfacing controllers with equipment. Upon successful completion, the student should be able to install PLCs and create basic programs. Theory/Lab. Prerequisite: ETDE 1343.

ETDE 2123
PLC APPLICATIONS
This is an applied course in programmable logic controllers (PLCs) and their applications in industrial environments. Topics include basic programming, hardware specifications, and wiring. After successful completion, the student should be able to program and troubleshoot fundamental PLC systems and related control devices. Theory/Lab. Prerequisite: ETDE 2113.

ETDE 2133
INSTRUMENTATION
This course focuses on the fundamentals of industrial instrumentation. Topics include the operation and calibration of electric, electronic and pneumatic instruments, as well as the basic physical laws of temperature, pressure, flow and level. Upon successful completion, the student should be able to design, install, maintain and calibrate basic instruments and control devices. Theory/Lab. Prerequisites: ETDE 1243, ETDE 1263.

ETDE 2173
INTRODUCTION TO DCS SYSTEMS
This course focuses on the design of machine systems using the principles of mechanical design ergonomics, economics and production processes. Students increase their drafting and design competency through development of detail and assembly drawings and associated technical documents. Prerequisites: Intro to PLCs, Instrumentation. Theory/Lab.

ETDE 2223
ELECTRICAL POWER DISTRIBUTION
Students will study the physical properties of electromagnetic and electromechanical energy conversion devices and their application to conventional rotating machines. Electrical energy generation, transmission and distribution and relay technology will also be covered. Prerequisites: ETDE 1243, ETDE 1263, ETDE 1363.

ETDE 2253
HYDRAULICS & PNEUMATICS
This course covers hydraulic principles, types of hydraulic fluids and their characteristics. Describes components of the hydraulic system and their functions, including filters and strainers, reservoirs and accumulators, pumps, piping,
tubing and hoses, control valves, relief valves, and actuating devices. Covers a variety of operating principles of reciprocating, positive displacement, rotary, and dynamic air compressors. Covers primary and secondary air treatment. Includes valves, logic devices, cylinders, and air motors. Theory/Lab. Prerequisite: ETDE 1343.

ETDE 2273
ELECTRONIC CONTROL DEVICES
This course introduces the student to a wide range of electronic devices and industrial automatic controls. Emphasis is placed on motor speed/position controls and programmable devices. Topics include specialized switches, sensors, stepper motors, stepper motor controllers, variable frequency drives, and control systems common to the industrial environment. Upon completion, the learner will be able to install, troubleshoot, and program variable frequency drives and stepper control systems. Students will also analyze how variable speed drives save energy and maintenance costs in industrial applications. Theory/Lab. Prerequisites: ETDE 1363.

ETDE 2343
MOTORS AND CONTROLS II
This course is a continuation of ETDE 1343 “Electrical Motor Controls”. The course will focus on advanced electrical controls, devises and related control circuitry. Advanced timing functions and circuits, pilot control and sequencing, as well as variable frequency control will all be covered in this course. Prerequisite: Intro to Motor Controls. Theory/Lab.

ETDE 2467
INTERNSHIP (AAS PROGRAM)
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All works is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: recommendation by program instructor and a minimum overall GPA of 2.5.

ETDE 3112
ELECTRICAL/ELECTRONICS INSTRUMENTATION INTERNSHIP
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All works is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: recommendation by program instructor and a minimum overall GPA of 2.5.

ETDE 3113
ELECTRONIC CONTROL DEVICES
This course introduces the student to a wide range of electronic devices and industrial automatic controls. Emphasis is placed on motor speed/position control and programmable devices. Topics include specialized switches, sensors, stepper motors, stepper motor controllers, variable frequency drives, and control systems common to the industrial environment. Students will be exposed to microcontroller hardware and programming. Upon completion, the learner will be able to install, troubleshoot, and program variable frequency drives and stepper control systems. Students will also analyze how variable speed drives save energy and maintenance costs in industrial applications. Theory/Lab. Prerequisite: ETDE 1363.

ETDE 3133
PROCESS MEASUREMENT AND CONTROL
This is an advanced course electronic/pneumatic instrumentation devices commonly used in process measurement and control systems. Students work in a teaming environment to apply various control methodologies (i.e., PID, etc.) to monitor and control process variables in solving real world problems. Upon successful completion, the student will be able to design, install, maintain and calibrate process measurement and control systems. Theory/Lab. Prerequisites: ETDE 4233, ETDE 2133.

ETDE 3233
ADVANCED INSTRUMENTATION
This course focuses on the fundamentals and advanced study of industrial instrumentation. Topics include the operation and calibration of electric, electronic and pneumatic instruments, as well as the basic physical laws of temperature, pressure, flow and level. Students will do advanced projects leading to higher order learning of the instrumentation field. Upon successful completion, the student should be able to design, install, maintain and calibrate basic instruments and control devices. Theory/Lab. Prerequisites: ETDE 1243, ETDE 1263.

ETDE 3253
ADVANCED PLC APPLICATIONS
This is an advanced course in programmable logic controllers (PLC’s) and their applications in industrial environments. Topics include advanced programming, networking, specialty I/O modules, reading and interpreting
error codes, human machine interface, and troubleshooting. Upon successful completion, the student should be able to program and troubleshoot ADVANCED PLC systems and related control devices. Theory/Lab. Prerequisites: ETDE 2113.

ETDE 3213
PROJECT MANAGEMENT AND ENGINEERING ECONOMICS
Application of economic principles and techniques used to plan, document, complete, and report industry related projects. The use of tools for making sound decisions related to time, cost, risk, and quality will be an integral part of the course. Students will be required to demonstrate the use of these tools through contextual hands-on learning experiences and assessments.

ETDE 3223
INDUSTRIAL NETWORKS
In this course, students learn the fundamentals of local area networks and their operation in the industrial control environment. Topics include the characteristics of network topologies, system hardware (repeaters, bridges, routers, gateways), system configuration, and installation and administration of the LAN. Upon completion, students will be able to install, maintain, and manage typical industrial control networks. Theory/Lab. Prerequisite: ETDE 2123

ETDE 3313
HEAT TRANSFER AND FLUID MECHANICS
This is a calculus-based course covering fundamental principles of thermo-fluid sciences important to the design synthesis and operation of process control systems. Students will analyze fluid systems using Bernoulli and general energy equations, laminar and turbulent flows, flow and pressure measurements and flow forces. Students will also study heat transfer by conduction, convection, and radiation. Theory. Prerequisites: MATH 2144.

ETDE 3513
PROGRAMMING FOR INSTRUMENTATION
This course will introduce students to computer-based data acquisition and process control using graphical programming to automatically measure physical properties encountered in instrumentation engineering technology. Prerequisites: ETDE 2113.

ETDE 4233
LIQUID AND GAS FLOW MEASUREMENT
This course covers theory of operation, advantages/disadvantage and provides guidelines for selection and use of liquid and gas flow meters. Topics include methods and equipment that are used for accurate calibration, gas and liquid flow calculations, fluid properties, and the use of primary and secondary flow standards. Upon completion, students should be able to install, maintain, and design fluid measurement systems. Theory/Lab. Prerequisite: ETDE 3313.

ETDE 4313
DISTRIBUTED CONTROL SYSTEMS
This course will cover the practical applications of distributed control systems (DCS). Included is the relationship between programmable logic controllers and the DCS. Further included is the importance of the human machine interface (HMI) and advanced control strategies. Theory/Lab. Prerequisites: ETDE 3223.

ETDE 4813
INSTRUMENTATION CAPSTONE
The Capstone course is the culminating experience in Instrumentation. The course includes the fundamental theories and practices of instrumentation. It expands the concepts presented in previous work through simulation and actual problem resolution. Lab. Prerequisites: program instructor approval and a minimum overall GPA of 2.5.

ENGINEERING GRAPHICS TECHNOLOGY (ETDG)

ETDG 1143
INTRODUCTION TO DESIGN/DRAFTING
Students will learn basic use and application of AutoCAD as a drafting tool through the creation of geometrical shapes, parts, drawings, and electrical symbols and schematics. Students will also gain a basic understanding of the fields of civil, mechanical, and architectural design and drafting. Students must be enrolled in Intermediate Algebra or higher. Theory/Lab. Co-requisite: MATH 0163 if needed.

ETDG 1192
APPLIED AUTOCAD
Each learner will produce geometric figures using basic AutoCAD drawing and editing commands, and progress to advanced AutoCAD features that enhance productivity and accuracy. Drawings will be scaled and plotted according to industry standards. All learners will use the Windows operating system to manage drawing files, and will compare their time on a project with the minimum acceptable time allotted to a practicing technician for completion of the same task. In order to improve life-long learning skills, the learner will use written or on-line resources to independently determine a solution when
presented with an unknown concept. Theory/Lab. Prerequisite: ETDG 1143. Co-requisite: MATH 1513.

ETDG 1253
TECHNICAL DRAWING
Using visualization skills and considering spatial relationships each learner will create technical drawings that include orthographic, section and auxiliary views. Complete dimensioned drawings will be created according to ANSI and other industry standards. Using Microsoft software, all learners will produce a bill of material, calculate unit conversions and perform Internet research. Theory/Lab. Prerequisite: ETDG 1143. Co-requisite: MATH 1513.

ETDG 1523
ARCHITECTURAL DESIGN
Students will use architectural theories to design an aesthetic and structurally sound, light commercial building. Students will apply drafting standards to produce construction documents while maintaining ADA specifications for the purpose of building a commercial structure. Students will also use software that allows designers early exploration of design concepts and forms and the ability to more accurately maintain the designer’s vision through the design, documentation, and construction process. Make a change and it’s automatically updated across the project, an essential element in the building information modeling (BIM) process. The software taught will support sustainable design, clash detection, and construction planning and fabrication. Theory/Lab. Prerequisite: ETDG 1143. Co-requisite: MATH 1513.

ETDG 2143
ARCHITECTURAL MODELING
Students will learn to use software that allows designers early exploration of design concepts and forms and the ability to more accurately maintain the designer’s vision through the design, documentation and construction process. Make a change and it’s automatically updated across the project, an essential element in the building information modeling (BIM) process. This software provides support to sustainable design, clash detection, construction planning and fabrication. Theory/Lab. Co-requisite: MATH 0163.

ETDG 2223
PIPING DRAFTING AND DESIGN
This course covers the principles of piping systems function and design, preparation of pipe drawings from sketches and specifications, bills of material handling and preparation. It also includes introduction of heat exchangers, calculation of pipe and equipment for drawings and design requirements using industry standards. Theory/Lab. Co-requisites: ETDG 1253, ETDG 1192, MATH 1513.

ETDG 2293
MECHANICAL DESIGN
This course focuses on the design of machine systems using the principles of mechanical design ergonomics, economics and production processes. Students increase their drafting and design competency through development of detail and assembly drawings and associated technical documents. Theory/Lab. Prerequisites: ETDG 1192, ETDG 1253, ETDG 2423.

ETDG 2423
SOLIDWORKS
Students use SolidWorks, mechanical design automation software to create parametric, solid models of parts and assemblies, taking into consideration design intent and file naming conventions. Mechanical assemblies and detail drawings are derived from individual solid parts. Solid model part files are converted to an appropriate format for use in manufacturing processes. Theory/Lab. Co-requisite: MATH 0163 if needed.

ETDG 2523
DESIGN DRAFTING CAPSTONE
The Capstone course is the culminating experience in Design Drafting. The course includes the fundamental theories and practices of Design Drafting. It expands the concepts presented in previous course work through simulation and actual problem resolution. Lab. Prerequisites: program instructor approval and a minimum overall GPA of 2.5.

ETDG 2623
BUILDING STRUCTURES
Students create construction documents of structural steel framework and support systems of commercial and industrial buildings using their own design for beam-to-girder and beam-to-column connections. Students calculate dimensional and design information using the Manual of Steel Construction as a reference. Students create fabrication drawings of the individual components of framework and support systems of buildings for
manufacturing and delivery to the construction site. Theory/Lab. Prerequisite: ETDG 1253, MATH 1613.

ETDG 2663
CIVIL TECHNOLOGY APPLICATIONS
Students will learn and apply knowledge in the field of land surveying drafting and civil drafting. This course includes the study of converting field notes to drawings, developing plans and profiles for underground utilities, and paving and developing site grading plans. Theory/Lab. Prerequisite: ETDG 1192

ETDG 2674
CIVIL DRAFTING
In this course, students will develop an understanding of the field of Civil Drafting which includes standard procedures, plan and profile sheets, alignments, and other key elements of the civil design field. Students will also use a computer aided design program to gather, analyze, compile and manipulate data to create accurate and fully integrated Geographic Information Systems (GIS) mapping projects. Theory/Lab. Prerequisites: ETDG 1192, MATH 1613.

ETDG 2812
DESIGN DRAFTING INTERNSHIP
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: recommendation by program instructor and minimum overall GPA of 2.5.

MANUFACTURING TECHNOLOGY (ETDM)

ETDM 1153
INTRODUCTION TO MANUFACTURING
Students will learn general shop safety and practices, applications of precision measuring and layout, and operation of basic industry machine tools including conventional lathes and mills. Students will also learn basic manufacturing processes as they relate to industry standards. Theory/Lab.

ETDM 1333
CNC MANUFACTURING PROCESSES AND FIXTURES
In this course, students will identify applications of tool and tooling used on CNC lathes and mills, identify proper speeds and feeds for material, tool geometry, ANSI standards for inserts and tool holders, as well as research new technology. Students will learn to create a process flow, and then improve the process by saving time and money. Theory/Lab. Prerequisites: ETDM 1353, ETDM 1413.

ETDM 1343
CNC MACHINE PROGRAMMING
The student will learn programming methods for milling and turning machines including manual and computer assisted that will be utilized to produce industry related parts and components, bench-marked to industry standards in a variety of material. Theory/Lab. Prerequisites: ETDM 1353. Co-requisite: MATH 1613.

ETDM 1353
CNC MACHINE OPERATION
In this course the student will learn general shop safety and operation, basic machine operations. MDI, DNC, and other data input methods will be utilized in the set-up and operations of CNC machine tools to produce industry related parts to specified tolerance and quality, including milling and turning center. Theory/Lab. Co-requisite: ETDM 1153.

ETDM 1413
CONVENTIONAL MFG PROCESSES AND TOOLING
In this course, students will learn the appropriate tools and tooling for lathes and mills, ANSI standards for inserts and tool holders, proper speed and feed for materials, proper tool geometry, create a process flow and identify process improvement opportunities available with new technology. Theory/Lab. Prerequisite: ETDM 1153, MATH 1513.

ETDM 2112
MANUFACTURING INTERNSHIP
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: recommendation by program instructor and minimum overall GPA of 2.5.

ETDM 2123
APPLIED MFG PROCESSES
Students will be able to identify motivating factors in the workplace for diverse people, and explain and demonstrate an MRP system. Students will learn to select the proper machine operations and fixtures necessary to accurately perform a process, calculate cost of required material,
estimate machine run times to determine actual costs of producing a part, and identify the individual components of and create a production schedule. As part of a practical, real world project, the students will define and discuss the steps necessary to move a manufacturing company toward lean manufacturing by explaining and demonstrating lean manufacturing principles and practices as applied to their project. Theory/Lab.

ETDM 2203
AUTOMATED MANUFACTURING TECHNIQUES
Students will be introduced to the Programmable Logic Controller (PLC), their control schemes, and applications in modern automation, process documentation techniques, and robotics. Students will also be introduced to modern manufacturing concepts like JIT, and Lean Technologies, including their applications. Theory / Lab.

ETDM 2423
QUALITY SYSTEMS & PRACTICES
Student will learn to use various quality processes to improve the manufacturing of industry products. Statistical process control (SPC), total quality management (TQM), and the various steps involved in earning ISO certifications will be taught as projects with an emphasis on how quality effects customer service and customer relations. A variety of testing equipment will be used to verify the quality of manufactured items. Theory/Lab.

ETDM 2463
CAM APPLICATIONS
In this course the students will learn advanced CNC programming methods on the CNC mill and lathe using computer assisted programming software and verify program performance by setting-up and operating the machine to perform advanced operations to specifications. Theory/Lab. Prerequisite: ETDM 1343, ETDM 1353.

POWER PLANT (ETDP)

ETDP 1113
INTRODUCTION TO POWER PLANTS
This course will be a survey of electric power generation and power plant systems and processes. Emphasis will be placed on generating station facilities, power utility philosophy, organizational structure, communication, health and safety, and career paths. Theory. Co-requisite: MATH 0163 if needed.

ETDP 2112
PIPING AND INSTRUMENT DIAGRAMS
This course will develop proficiency in the reading, understanding, and application of system Piping and Instrumentation Diagrams. Students will gain proficiencies in reading P&ID’s, tracing systems, use of P&ID’s for troubleshooting systems, and Lock-out/Tag-out. Also covered will be safety programs and a basic understanding of OSHA regulations. Theory/Lab. Prerequisite: ETDP 1113.

ETDP 2123
BOILERS
Students will gain competency in the theory of typical boilers used in the generation of electricity. Topics include Boiler Classification, Boiler Design and Construction, Boiler Fittings and Auxiliaries, Boiler Operation and Maintenance, Steam Tables, and Environmental Controls. Theory only. Prerequisites: ETDP 1113.

ETDP 2133
MECHANICAL SYSTEMS
Students will gain competency in the practical use, operation, and maintenance of mechanical equipment related to power generation facilities. Topics include basic mechanics, fans, blowers, pumps valves heat exchangers, conveying equipment, bearings, and lubricants. Theory/Lab Prerequisite: ETDE 2253.

ETDP 2143
COMPLIANCE REGULATIONS
Students will gain competencies in the understanding and application of compliance regulations associated with the Power Generation Industry. Major focus will be on NERC and Environmental compliance regulations. Theory. Prerequisites: ETDP 1113.

ETDP 2153
COMBUSTION SYSTEMS AND PROCESSES
Students will gain competency in the practical use, operation and maintenance of combustion systems. Topics include combustion process, air fuel mixture, igniters, burners and access air. Theory. Prerequisite: ETDP 2133.

ETDP 2173
WATER SYSTEMS AND PROCESSES
Students will gain competency in practical use, operation, and maintenance of various water systems typically found in power plant facilities. Topics include steam/water cycle, condenser and circulating water, cooling towers, feedwater components and cycle operation, water treatment, and demineralization. Theory/Lab Prerequisite: CHEM 1314.
ETDP 2223
PRIME MOVERS
Students will gain competency in the theory of operation of typical prime movers used in the generation of electricity. Topics include steam turbines, gas turbines, combustion turbines, and combined cycle turbines. Theory Prerequisite(s) ETDE 1343.

ETDP 2216
CAPSTONE
The Capstone course is the culminating student experience in Engineering Technologies. The course utilizes applied research projects identified during student internships. Students will work in teams to investigate alternatives for real problems which have the potential to increase employer productivity. The student teams will analyze potential, design alternative solutions, test the most viable alternative, interpret the findings, document the best practices and promote deployment back to employers. Faculty assists students in the design and conduct of their applied research efforts. Theory/Lab. Prerequisites: Taken in the semester of graduation.

ETDP 2313
THERMAL EFFICIENCY
Students will gain competency in the practical use of thermodynamic principles and how they relate to plant systems. Topics include heat transfer, fluid flow, conservation of energy, tables of properties, steam cycles, and boiler systems. Calculations for determining plant efficiency will be covered. Theory Prerequisite PHYS 1114.

ETDP 2612
INTERNSHIP
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: faculty approval and a minimum 2.5 GPA.

GAMING (GAM)

GAM 1103
INTRODUCTION TO NATIVE AMERICAN/OKLAHOMA GAMING
This course covers the evolution of American Indian gaming and its influence on tribal self-determination. Historical, legal, economic, social/cultural and regulatory impact of legalized gaming on Indian Nations and Oklahoma will be examined. Theory.

GAM 1123
SUPERVISION AND PROTECTION OF CASINO GAMES I
This course will focus on basic gaming form, electronic game slots and table games, observation of suspicious activity and breaches of policy procedure. Theory.

GAM 1133
BASIC GAMES OPERATIONS
This course will focus on the basic understanding of rules and regulations for roulette, electronic games, blackjack, and casino carnival type games. Understanding the various personnel roles, duties and their functions will also be covered. Theory.

GAM 1233
CUSTOMER SERVICE STRATEGIES
This course examines the role and responsibilities of casino employees in building quality guest relationships that create customer satisfaction as well as exploring the functions of customer service employees in hospitality business. Theory.

GAM 1243
SURVEY OF CASINO GAMES
This course is an introduction to casino games. Topics include electronic gaming, table gaming, probability theory, and fraud detection. It is an understanding of the philosophy and basic techniques of various casino games. Theory.

GAM 1313
GAMING ADVERTISING
This course focuses on creating, coordinating and integrating advertising, public relations and marketing activities as well as developing and presenting a gaming campaign. Theory.

GAM 1323
BEVERAGE MANAGEMENT
This course teaches practical skills and knowledge for effective food and beverage service in a casino environment. Topics include basic sanitation and safety, greeting and service of guests, styles of service, and handling complaints. Upon completion, student should be able to demonstrate appropriate human relation and technical skills in the service of foods and beverages to develop customer satisfaction. Theory.

GAM 1413
INTRODUCTION TO THE CASINO INDUSTRY
This course introduces the various segments of the gaming industry. Major topics include a review of the historical
background of gaming and the evolution of the different types of gaming, including class II and III, lottery, riverboat, conventional and Native American gaming. Theory.

GAM 2103
CASINO OPERATIONS MANAGEMENT
This course gives an overview of the history and development of the gaming industry. Basic casino managerial techniques are covered with an emphasis on protection of casino games; staffing, labor/management relations; and floor, pit and shift supervision. Theory.

GAM 2113
ELECTRONIC GAMES MANAGEMENT
This course covers the basics of management focusing on departmental responsibilities and operating procedures. Emphasis will be on supervising shift managers, slot mechanics, EG techs, floor persons, electronic game cashiers and coin room managers. Topics will include electronic game drops, count room, jackpot fills and credits. Theory.

GAM 2123
SUPERVISION AND PROTECTION OF CASINO GAMES II
This course is an in-depth examination of the various methods used to protect casino table games. Reviews and examines possible ways that cheating can occur. Included are methods of detection and internal controls used by the casino. Theory. Prerequisite: GAM 1123.

GAM 2133
HOSPITALITY MARKETING
This course teaches strategies for marketing and decision making in the hospitality industry. Emphasis will be on customer identification, consumer behavior, competition, product promotion, and place and pricing strategy. Theory.

GAM 2143
BASIC ROOM OPERATIONS
This course teaches the basic understanding of camera systems and operations, policy and procedures for the various geographical areas of the casino, and observation techniques. Theory.

GAM 2203
CASINO MATHEMATICS
This course applies mathematic principles specific to casino operations and game control. It will include a review of arithmetic, analysis of odds/probabilities relative to casino games, and basic accounting and reporting procedures. Theory.

GAM 2213
NATIVE AMERICAN GAMING LAW
This course will focus on the various local, state and federal regulatory processes, including compacts, gaming, ordinances and internal control regulations. Theory.

GAM 2223
PLAYER TRENDS AND TRACKING
This course will examine the various methods that casinos use to monitor patrons transactions and data reports that are used to study the trends of frequent players through technology based systems. Player tracking will be discussed as a marketing tool for the casino. The benefits of trend data will be studied to identify under performing games. Theory.

GAM 2233
PUBLIC RELATIONS
This course is designed to integrate knowledge and skills into the critical thinking process required for corporate level decision-making by studying and presenting issues related to casino management. Development of a framework and format for effective operations of a service sector business will be included. Theory.

GAM 2303
TECHNIQUES OF CASINO DEALING
This is a hands-on training course designed to teach dealing skills. Emphasis will be on procedures, customer service and game protection. Theory.

GAM 2313
NATIVE AMERICAN GAMING REGULATIONS AND COMPLIANCE
This course introduces the laws and regulations related to the gaming industry within the United States with specific focus on Native American gaming in Oklahoma. An examination of Compact Agreements between Native American Tribes and Oklahoma and their impact on Native American gaming operations will be included. Theory.

GAM 2323
SUPERVISION
This course teaches the application of strategies and the transition to a contemporary front-line leadership role including day-to-day operations, analysis, delegation, controlling, staffing, leadership, problem solving, team skills, and training. Theory.

GAM 2413
CASINO SECURITY
This course is designed to familiarize individuals with the
various types of security measures used in the casino industry to protect the agency from loss and maintain the integrity of the games. In addition to providing information relative to typical cheating methods in each game, the course will also provide information relative to the legal aspects of surveillance. Theory.

GAM 2423
INTRODUCTION TO HOSPITALITY MANAGEMENT
This course provides a basic understanding of the hospitality industry, including hotels, restaurants, casinos, casino hotels, institutions, consulting firms, and travel agencies. The course will also cover industry opportunities; and guest needs will be discussed. Theory.

GENERAL STUDIES (GEN)

GEN 2090 (1-9 CREDIT HOURS)
SPECIAL PROJECTS
Individual study under the supervision of an instructor with credit hours to be arranged. Projects relevant to the student’s major area of study may be selected. Theory/Lab. Prerequisite: The Division Chair’s approval.

GEOGRAPHY (GEOG)

GEOG 2243 (S, N)
FUNDAMENTALS OF GEOGRAPHY
This course is an introduction to basic geographic concepts and with an emphasis on the interrelationships of people with their physical and cultural environment. Theory. Note: available online.

GEOLOGY (GEOL)

GEOL 1014 (L, N)
EARTH SCIENCE
This course is the study of sciences related to Earth and our solar system – geology, meteorology, oceanography, and astronomy. Theory. Notes: available online; Physical Science elective.

GRAPHIC DESIGN (GRD)

GRD 1133
BASIC DRAWING
Basic Drawing is the start of an ongoing exploration of drawing skills as they relate to the Graphic Design field. Beginning studies deal with the principles of linear perspective and the use of light and shadow. Through sketching, students will look for line, tone, and texture. Subjects include still life studies, and outdoor sketches. Theory/Lab.

GRD 1143
BASIC DESIGN
This course includes the study of design elements and principles as well as foundation design including shape, form, and line. Theory/Lab.

GRD 1213
ADVERTISING DESIGN I
This course covers formats for advertising, layout formats and techniques, copy spacing, use of type, felt tip indications, and use of mixed media. Projects include a variety of ad layout and concept designs, while gaining an understanding of advertising and the history of the industry. Theory/Lab. Prerequisites: GRD 1133, GRD 1143, VIS 1123.

GRD 1243
ADVANCED DRAWING
After a brief refresher on perspective and form, students will focus on the human figure and learning to see like an artist. In class projects will include gesture drawings from live models, drawing from statues and toys, as well as self-portraits; out of class projects will include copying old masters, keeping a sketchbook, and one research project. Prerequisites: GRD 1133.

GRD 1333
DESIGN PRODUCTION
This course is designed to give students a comprehensive understanding of print production within the design industry. Print production has the responsibility of turning a creative idea into printed material including, but not limited to, magazine and newspaper ads, brochures, outdoor signage, and posters. Advanced page layout production techniques in the preparation of job printing from one to four color print designs as well as principles of pre-press processes are covered while the student achieves the three targets of production: time, quality, and costs. Theory/Lab. Prerequisites: GRD 1143, GRD 1213, GRD 2513, VIS 1203. Co-requisites: VIS 1343, VIS 1373.

GRD 1373
SURVEY OF WESTERN DESIGN
This course covers human history from prehistoric time until present day concentrating on religion, environment, and society and how these areas have influenced design in international western culture. The major focus is to explore the progression of graphic design. The student will
develop a bank of knowledge consisting of information and imagery. Theory.

GRD 2090 (1-9 CREDIT HOURS)
SPECIAL PROJECTS
This course is an individual study under the supervision of an instructor with credit hours to be determined by the complexity of the project. Projects may be undertaken in any area of Graphic Design. Theory/Lab. Prerequisite: The Division Chair approval.

GRD 2413
ADVERTISING DESIGN II
This course is a study of advertising agencies, newspapers, magazines, outdoor, electronic/digital, and other communications media. The course strives to develop the conceptualization, interpersonal skills, and the ability to work in creative team competencies that are the mainstay of the industry. Theory/Lab. Prerequisites: GRD 1213, GRD 1333, VIS 1343, VIS 1373. Co-requisite: GRD 2423 or Division Chair approval.

GRD 2423
ADVANCED DESIGN PRODUCTION
In this course students are expected to synthesize advanced skills in order to produce a multi-page publication as well as related print works. Students will explore and apply concepts in print production from planning through job completion. Students will develop problem solving techniques, organization, time management, and reproduction issues and design mechanics that will be applied to each project. Theory/Lab. Prerequisites: GRD 1333, VIS 1343, VIS 1373. Co-requisite: GRD 2423 or Division Chair approval.

GRD 2513
DESIGN/DRAWING ILLUSTRATION
This course is a continuation of Basic Design and Basic Drawing. Using lectures and supportive presentations students will explore additional design elements and principles concentrating on color theory. This course will expand the students understanding of proportion, perspective, and value using illustrative mediums such as pen and ink. The emphasis will be on developing technical virtuosity. Students will also concentrate on the face and human form with life drawing studies. Theory/Lab. Prerequisites: GRD 1133, GRD 1143 or Division Chair approval.

GRD 2523
IDENTITY DESIGN
This course emphasizes branding solutions in identity design. It involves the creation of thumbnails through comprehensive layout stages and final production which are used in presentations. The course includes several identity projects that are conceptualized, designed, and produced for real and/or hypothetical companies which provide a product or service. Theory/Lab. Prerequisites: GRD 2413, GRD 2423. Co-requisite: GRD 2543.

GRD 2543
GRAPHIC DESIGN PRACTICUM
In this course student’s work to address actual client needs through client meetings, visual research, and prototype development. Students are involved with projects from the initial meeting with the client through delivery of the finished work. Projects in this class are designed to further develop the students’ interpersonal communication, production knowledge while working in a design studio team environment. Lab. Prerequisites: GRD 2413, GRD 2423 or Division Chair approval.

GRD 2623
GRAPHIC DESIGN
This course emphasizes packaging, advertising, and branding conceptual design solutions. Projects involve thumbnails through super-comprehensives for package design, magazine advertisements and annual reports. These solutions include design rationales that involve writing, marketing and printing production. Theory/Lab. Prerequisites: GRD 2523 or the Division Chair approval.

GRD 2696
GRAPHIC DESIGN CAPSTONE
This course represents the final culmination of the program of study involving either hypothetical or live assignments and incorporates all of the learning objectives. A branded portfolio, interactive CD, and web site of work produced, as well as a resume will be required for job preparation and real job interviewing. Post-tests will be administered and included in the student’s final grade. Participation in an industry portfolio review and multiple industry interviews are required. Theory/Lab. Prerequisites: all required courses on GRD plan of study. Co-requisites: GRD 2623 or Division Chair approval.

GRD 2800 (3-12 CREDIT HOURS)
GRAPHIC DESIGN INTERNSHIP
This course involves on-the-job training in industry. It emphasizes supervised employment and observation. Lab. Prerequisite: GRD 2543 or the Division Chair approval and must have a minimum GPA of 2.0.
GENERAL TECHNOLOGY – Air Conditioning (GTAC)

GTAC 1503
BASIC REFRIGERATION
This course emphasizes principles of basic refrigeration for non-air conditioning and refrigeration majors. The operation, diagnosis and service of basic refrigeration units and related controls are included as well as, refrigerant charging efficiency checks and electrical wiring. Theory/Lab.

GTAC 1603
BASIC AIR CONDITIONING AND HEATING
This course covers principles of basic air conditioning and heating for non-air conditioning and refrigeration majors. It includes the operation, diagnosis and service of basic air conditioning-heating systems and related components, as well as electrical circuits, control adjustment and efficiency checks. Theory/Lab. Prerequisite: GTAC 1503 or the Division Chair’s approval.

GENERAL TECHNOLOGY – Automotive (GTAU)

GTAU 1652
ENGINE AND MEASUREMENT FUNDAMENTALS
The identification, principles and operation of internal combustion engines are covered in this course through theory, demonstration and practical laboratory. It includes identification and basic operation of related engine systems, principles and use of automotive precision measuring devices using the metric and decimal systems, class and program orientation, introduction to shop safety and hand and power tool usage. Theory/Lab.

GENERAL TECHNOLOGY – Construction (GTCT)

GTCT 1183
WELDING
This welding program is designed to develop knowledge and skills in the welding of ferrous and non-ferrous metals using the arc processes of stick electrodes, MIG (Microwire Inert Gas), and TIG (Tungsten Inert Gas). Oxygen-acetylene cutting and welding processes, and weld testing procedures are included. Theory/Lab.

GENERAL TECHNOLOGY – Engineering (GTET)

GTET 1193
MICROPROCESSOR APPLICATIONS
This course includes microprocessors in control applications, such as transducers, input signals, logic operations, output signals and actuators. Applications from automotive, air conditioning, diesel, machine tools and electronics are emphasized. Theory/Lab.

GTET 1353
AC ELECTRICAL POWER GENERATION
This course includes principles of single and three-phase power generation, including operation, construction, control and maintenance. Theory/Lab.

GTET 2402
MICRO INSTRUMENTATION
This course covers cleaning, repair, fabrication and testing of various aircraft instruments. It also includes synchros, servos and other related devices. Theory/Lab.

GTET 2463
MICRO-ELECTRONICS PRINCIPLES
This course emphasizes basic electrical and electronics principles directed towards the application of the watch and micro-instrument industry. The course includes basic rules and laws of magnetism and electricity, batteries, solid state devices, digital circuits and displays, stepper motors and quartz crystals. Theory/Lab.

GTET 2593
DIRECT DIGITAL CONTROLS
Process measurement and control fundamentals will be explored in this course, including the physics of temperature, pressure, flow and level. The course will emphasize direct digital control and pneumatic control as it relates to the heating and refrigeration industry. Theory/Lab. Prerequisites: ACR 1126, ACR 1203, ACR 1206, ACR 1343.

GTET 2703
TECHNOLOGY PROGRAMMING
The emphasis of this course is programming in areas other than business accounting. It is not language dependent but requires use of one or more languages and includes technical problems simulation and graphics. Theory/Lab.
GENERAL TECHNOLOGY (GTGE)

GTGE 1111
COLLEGE CORNERSTONE
College Cornerstone serves as the foundation for students to build upon during their time at OSU Institute of Technology and is delivered through one’s home department. Students must document, defend, or demonstrate the ability to perform tasks required to meet the objectives of each unit including e-mail proficiency, library research, resource tools, learning styles and study strategies, career exploration, and time and money management. Theory.

GTGE 2030 (1-9 CREDIT HOURS)
OCCUPATIONAL PRACTICUM
An occupational practicum is an individualized experience in the individual’s area of specialization under the supervision of an instructor. Hours and responsibilities to be arranged. Normally, experience is associated with employment. Theory/Lab. Prerequisite: The Division Chair’s approval.

GTGE 2040 (1-9 CREDIT HOURS)
WORKSHOPS
A course designed for a variety of workshop experiences. Specific topics will be designated as the workshop is scheduled and will be based on expressed needs. Theory/Lab.

GTGE 2050 (1-9 CREDIT HOURS)
DIRECTED INDIVIDUAL PROBLEMS
Individual problems are under the direction of an instructor with specific responsibilities to be arranged. Problems will normally be related to the individual’s specialty area. Theory/Lab. Prerequisite: The Division Chair’s approval.

GTGE 2060 (1-9 CREDIT HOURS)
SEMINARS
This course consists of a variety of seminars and/or research experiences with specific topics designated as the workshop is scheduled based on expressed needs. Theory/Lab.

GTGE 2070 (1-9 CREDIT HOURS)
TECHNOLOGICAL DEVELOPMENTS
Individual projects directed by an instructor with responsibilities to be determined. Projects are normally associated with some significant development within the individuals area of specialization. Theory/Lab. Prerequisite: The Division Chair’s approval.

GENERAL TECHNOLOGY – Heavy Equipment (GTHE)

GTHE 1223
HYDRAULICS AND PNEUMATIC PRINCIPLES
This course includes hydraulic and pneumatic operation and principles of pumps, control valves, actuators, oil conditioners, conveying materials, graphic symbols and flow diagrams. Theory/Lab.

GTHE 1241
SPECIALIZED ELECTRONICS TECHNOLOGY (GM-SET)
A course applying theory and application of electrical principles and concepts, students will study the use of electrical measurement devices, wiring diagrams, proper wire repair methods, semiconductors and microprocessors. Emphasis is on a diagnostic procedure through on-bench and practical exercises using automotive application. Theory/Lab.

GENERAL TECHNOLOGY – Information Technology (GTIT)

GTIT 1133
COMPUTER LITERACY & APPLICATIONS (Cooperative Alliance)
This course is an applied exploration of personal computing in which students learn system operation and maintenance, Internet technologies and primary desktop applications. Theory/Lab.

HEALTH & HUMAN PERFORMANCE (HHP)

HHP 1113
PERSONAL HEALTH
This course is a comprehensive study of personal health with emphasis on mental health, human sexuality, growth and development, psychoactive drugs, communicable diseases, degenerative diseases, consumer, and community health that will result in positive change in the health attitudes and practices of students. Theory.

HISTORY (HIST)

HIST 1483
U.S. HISTORY TO 1865
This course covers the history of the United States from European colonization through the Civil War period. One class in this course is usually offered each semester with an emphasis on Native American contributions to the U.S. History. Theory.
HIST 1493
U.S. HISTORY SINCE 1865
The history of the United States from the reconstruction period to the present is discussed. Emphasis is given to the growth of industry and its impact on domestic and foreign affairs. Theory. Note: available online.

HIST 1613 (H)
WESTERN CIVILIZATION TO 1500
This is an exploration of western civilization from the ancient world to the Reformation with a multicultural perspective on the study of mankind. Theory.

HIST 1623 (H)
WESTERN CIVILIZATION AFTER 1500
This is a continuation of HIST 1613 with an emphasis on the period from the Reformation to the present. Theory.

HIST 2323
OKLAHOMA HISTORY
Development of the state of Oklahoma from prehistory to present is discussed. Among the material relating to Oklahoma to be covered are the geography and geology, prehistoric cultures, Native American heritage, Civil War, Cimarron Territory, Indian Territory, Oklahoma Territory, statehood, development of political institutions, ethnic diversity, economic development, politics and other aspects contributing to the formation of the state. The course satisfies the Oklahoma State Department of Education requirement for teacher certification. Theory. Note: available online.

HUMANITIES (HUM)

HUM 1013 (H)
HUMANITIES I
Themes of human expression as reflected through art, music and literature from the classical era through the Renaissance are examined. Theory. Note: available online.

HUM 1033 (H)
HUMANITIES II
This course is a continuation of HUM 1013 beginning with the Renaissance. The emphasis in this course is on contemporary thought. Theory. Designated as Humanities. Prerequisite: HUM 1013 (preferred but not required) or Division Chair approval.

HUM 1113 (H)
MUSIC APPRECIATION
This is a course designed to give students an appreciation of music through analysis of the impact of music over various time periods of the civilization of humankind throughout the world. Theory.

HUM 2243 (H)
NATIVE PEOPLES OF NORTH AMERICA
This course is a study of the history and cultures of Native Americans from pre-colonial to present times. Emphasis will be on tribal cultures, traditions, and experiences, conflicts with European explorers and settlers, and U.S. government relations. Students will discuss cultural differences as well as legal and political issues affecting Native Americans today. Theory. Note: available online.

HUM 2453 (H)
INTRODUCTION TO FILM
This course is an introduction to the basics of motion pictures, film theory, history and appreciation. Theory.

HUM 2563 (I, H)
COMPARATIVE CULTURES
This course compares environments, economies, social and political organizations and other aspects of culture among selected literate and preliterate societies. Theory.

HUM 2663 (I, H, D)
STUDY/TRAVEL/WORK ACROSS CULTURES & BORDERS
In today’s world, interaction with people of other cultures is no longer an exceptional event but an increasingly familiar occurrence. Often these interactions occur at the local supermarket or even with a routine customer service phone call. It is also ever more common for Americans to interact across cultures as part of their personal or work travels to other countries. This course will prepare participants to more effectively engage with people of other cultures and copy with the inevitable challenges faced when crossing political and social borders.

HIGH VOLTAGE LINEMAN PROGRAM (HVLP)

HVLP 1133
INTRODUCTION TO HIGH VOLTAGE ELECTRICITY AND SAFETY
This course will cover the high voltage industry’s career opportunities including job salary information, placement requirements, current trends, research on companies and what are the physical, mental and social needs in the high voltage industry. This course will also include and cover the many safety hazards that exist and training opportunities that must occur. This course will also cover issues as it relates to being successful in college. It will
include a career cornerstone experience that will emphasize networking with professional and student organizations. Theory.

HVLP 1216
HIGH VOLTAGE INTERNSHIP I
This first High Voltage internship will be a supervised cooperative industry experience which allows students the opportunity to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines. Lab. Prerequisite: HVLP 1133, HVLP 1243, HVLP 2663 departmental approval, and an overall GPA of 2.5 or greater, and current CDL.

HVLP 1243
HIGH VOLTAGE POLE CLIMBING TECHNIQUES
This course will include wooden pole climbing techniques and procedures that are needed to become a line technician. Safety instructions will be emphasized and will follow OSHA standards. Theory/Lab.

HVLP 1316
HIGH VOLTAGE INTERNSHIP II
This course is a cooperative agreement between industry and education which allows the student to utilize and define skills learned in their educational process. All work is to be performed in accordance with the industry standards and will be supervised by an electrical utility journeyman and school representative. Lab. Prerequisites: HVLP 2563, HVLP 2663, departmental approval, an overall GPA of 2.5 or greater, and current CDL.

HVLP 1353
DC AND AC HIGH VOLTAGE CIRCUIT ANALYSIS
This course is a study of electricity involving electrical properties of materials, electrical laws, units, components, impedance, and magnetism. It will cover the theory of operation of the equipment used to generate and distribute electrical energy from the source to the end user. Theory/Lab.

HVLP 2416
HIGH VOLTAGE INTERNSHIP III
This third internship will be a supervised cooperative industry experience which allows students the opportunity to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines. Lab. Prerequisites: HVLP 2483, departmental approval, an overall GPA of 2.5 or greater, and current CDL.

HVLP 2483
PRINCIPLES OF OPERATION OF HIGH VOLTAGE DISTRIBUTION SYSTEMS
This course is a study of overhead and underground high voltage systems. Transformer configurations, conduit sizing, line voltage drops and the installation of overhead and underground systems will be learned. Handling tensioned lines, de-energized lines and the grounding of these systems as required will also be covered. High voltage equipment, high voltage switching and the safety practices involved in three types of installations will be covered. Theory/Lab. Prerequisites: HVLP 1243, HVLP 1353.

HVLP 2516
HIGH VOLTAGE INTERNSHIP IV
This course is a cooperative agreement between industry and education which allows the student to utilize and define skills learned in their educational process. All work is to be performed in accordance with the industry standards and will be supervised by an electrical utility journeyman and school representative. Lab. Prerequisites: departmental approval, an overall GPA of 2.5 or greater, and current CDL.

HVLP 2553
UNDERGROUND DISTRIBUTION SYSTEMS
While similar in nature to overhead systems, an underground system has its own requirements. Construction techniques, tools and equipment and traffic control will be given extensive coverage. Troubleshooting maintenance and care of personal equipment are covered with special emphasis on safety. Theory/Lab. Prerequisite: HVLP 1353, HVLP 2563.

HVLP 2563
OVERHEAD DISTRIBUTION SYSTEMS
Construction techniques, tools used and care of personal protective equipment will be an integral part of this class. Troubleshooting, traffic control and safety practices will be emphasized. Equipment that is peculiar to overhead systems will be covered. Theory/Lab. Prerequisite: HVLP 1243, HVLP 1353.

HVLP 2643
ADVANCED DISTRIBUTION SYSTEMS
This course will consist of a study of high voltage and the distribution electrical field. High voltage equipment, tools, distribution equipment and safety procedures will be covered. Local rules and regulations as well as the Electrical Codes will be covered as they pertain to these systems.
two types of installation. Theory/Lab. Prerequisites: HVLP 2563, HVLP 2553, and completed two (2) H.V. Internships.

HVLP 2663
HEAVY CONSTRUCTION EQUIPMENT AND OPERATION
This course consists of the study of various types of equipment used in overhead and underground high voltage systems. Actual operation of equipment is emphasized as well as minor preventive maintenance procedures. The equipment involved includes: backhoe, trenching machines, boring machines, bucket truck, drills, boom trucks, etc. Pole climbing is also practiced. Safety while operating this type of equipment is covered and stressed. Theory/Lab. Prerequisite: Current CDL Permit.

HVLP 2673
TRANSMISSION PRINCIPLES
A High Voltage course directed toward the transmission of electrical power before the distribution by utility companies. The course contains working practices and situations that transmission lineman encounter: extra high voltages, towers, pole configurations, bare hand and other work practices. Theory/Lab. Prerequisite: HVLP 2483.

HVLP 2716
HIGH VOLTAGE INTERNSHIP V
A cooperative agreement between industry and education, which allows the student to utilize and define skills learned in their educational process. All work is to be performed in accordance with the industry standards and will be supervised by an electrical utility journeyman and school representative. Lab. Prerequisites: Departmental approval, an overall GPA of 2.5 or greater, and current CDL.

HVLP 2726
HIGH VOLTAGE LINEMAN CAPSTONE EXPERIENCE
This course will consist of a study of Designing of Distribution, Transmission, and Underground. Figuring cost on total jobs and all material involved. There will be a review over everything covered in the previous class as needed. High voltage equipment, tools, distribution equipment, and safety procedures will be covered. Local rules and regulations as well as Electrical Codes will be covered as they pertain to these types of installations. This is a hands-on course where the students will be working more in the Classroom and on Projects. Theory/Lab. Prerequisites: HVLP 2643 and completed three (3) High Voltage Internships.

INFORMATION TECHNOLOGIES (ITD)

ITD 1013
FUNDAMENTALS OF INFORMATION TECHNOLOGIES
This course is an overview of information technologies, its systems and culture, in which students work in teams on real-world, multi-level projects in learning environments reflective of current, high-performance business settings. Topics include general literacy and terminology, history, societal impact and cultural shifts, career fields and opportunities, technology forecasting and trends, as well as contemporary ethical issues. Theory/Lab.

ITD 1213
HARDWARE SYSTEMS SUPPORT
This course focuses on the management and maintenance of hardware and operating system environments. Topics include user administration, security, backup/recovery, and advanced systems performance evaluation and troubleshooting. Theory/Lab.

ITD 1223
NETWORK SYSTEMS
In this course students examine network concepts, standards, technologies, media, protocols and topologies. Topics include connectivity, network devices, basic security, local and wide area networks, network design, transmission media, structured cabling, IP addressing and Open System Interface (OSI) model. Theory/Lab.

ITD 1243
PRINCIPLES OF INFORMATION SECURITY
Through this course, students explore the principles of information assurance, with emphasis on current threats and vulnerabilities. Topics include infrastructure and operational security; cryptography; legal and ethical issues; and security policies, practices and procedures. Theory/Lab.

ITD 1253
OBJECT-ORIENTED PROGRAMMING USING C#
In this course, students learn how to design, code, and test applications in C# using object-oriented programming techniques. Topics include classes, data types, variables, methods, recursion, operators, control statements, inheritance and polymorphism, arrays, packages, interfaces, Input/Output, and strings. Theory/Lab.

ITD 1333
OBJECT-ORIENTED PROGRAMMING USING JAVA
In this course, students learn how to design, code and test applications in Java using object-oriented programming
techniques. Topics include classes, data types, variables, methods, recursion, operators, control statements, inheritance and polymorphism, arrays, packages, interfaces, exception handling, Input/Output, Java applets and strings. Theory/Lab.

ITD 1353
WEB PROGRAMMING AND DEVELOPMENT
In this course, students learn web development through the application of various development principles, tools and technologies. Topics include audio, video and image formats; HTML; Dynamic HTML; XML; FTP; CSS; and JavaScript. Theory/Lab.

ITD 1373
VOICE, DATA & WIRELESS CONCEPTS
In this course students investigate telecommunication, data and wireless systems, technologies and policies. Topics include network architectures, transmission and media, protocols, operations, security and emerging technologies. Theory/Lab.

ITD 1423
ROUTER TECHNOLOGIES
Through this course students examine Wide Area Networks (WANs) and routing. Topics include router configuration, operation and troubleshooting; password recovery; multiple router installations; routing protocols; Ethernet; and TCP/IP. Theory/Lab. Prerequisite: ITD 1223.

ITD 2133
TECHNICAL SUPPORT MANAGEMENT
This course focuses on research techniques, help desk systems support, installation, as well as computer systems upgrades and maintenance. Topics include device setup and configuration, backup/recovery, advanced troubleshooting and problem-solving measures, and preventative maintenance. Theory/Lab. Prerequisite: ITD 1213.

ITD 2153
LAN/WAN IMPLEMENTATION AND SUPPORT
This is an advanced course on the design, configuration, and maintenance of switches, routers, local-area networks (LANs), virtual local-area networks (VLANs) and wide-area networks (WANs). Topics include: LAN configuration, operation and troubleshooting; WAN configuration, operation and troubleshooting; advanced routing protocols, and network troubleshooting. Theory/Lab. Prerequisite: ITD 1223.

ITD 2183
APPLICATION DEVELOPMENT USING JAVA
In this course students explore advanced programming techniques using Java. Topics include JDBC, file processing, graphical user interfaces, network programming and sockets, thread, security, servlets, swing, properties, introspection, collections and architectures. Theory/Lab. Prerequisite: ITD 1333.

ITD 2203
DATABASE SYSTEMS
This course introduces students to database systems, with emphasis on data modeling and the design of efficient database systems. Topics include database architecture, ER and EER models, the relational data model, SQL queries, normalization, indexing and security. Theory/Lab.

ITD 2223
OPERATING SYSTEMS
This course focuses on operating systems and system security. Topics include operating system installation, configuration and implementation, security templates and operating system security architectures. Theory/Lab.

ITD 2263
GRAPHICAL USER INTERFACE DEVELOPMENT
In this course students learn how to design, develop and evaluate interactive application interfaces. Topics include events, regular expressions, exception handling, debugging, and testing. Theory/Lab. Prerequisite: ITD 1253.

ITD 2313
SCRIPT PROGRAMMING
Through this course students learn to develop and execute scripts. Topics include shell scripting, Python, regular expressions, PowerShell and other scripting technologies. Theory/Lab.

ITD 2363
ENTERPRISE SOLUTIONS
In this course students utilize the principles, tools, and practices for the design and use of comprehensive computer-based information systems. Topics include information systems theory and principles, systems architecture, data modeling, web-based systems, systems analysis and project management. Theory. Prerequisite: any 2000 level ITD programming course.
ITD 2413
ENTERPRISE SECURITY MANAGEMENT
Through this course, students learn the basic principles and the managerial aspects of securing enterprise information systems. Topics include risk management, security policy and plan development, security architectures, incident handling, disaster recovery planning, system administration, access control and change management. Theory/Lab. Prerequisite: ITD 2223.

ITD 2453
EVENT-DRIVEN PROGRAMMING USING VISUAL BASIC
This course focuses on event-driven programming in Visual Basic, and furthers student understanding of efficient program design. Topics include controls and their properties, variables and constants, data types, decision making, procedures and functions, multiple forms, error handling, classes, variables, lists, repetition, dynamic arrays and data files. Theory/Lab. Prerequisite: ITD 1253.

ITD 2633
DATA CENTER IMPLEMENTATION AND MAINTENANCE
Through this course, students will acquire a working knowledge of the processes and procedures necessary to design, install and maintain data center environments. Topics include: virtual and physical computing infrastructure, cloud deployment models, fire detection and suppression, environmental controls and impact, power systems, physical security and system monitoring. Theory/Lab. Prerequisites: ITD 1223, ITD 2223.

ITD 3163
IT ENTERPRISE OPERATIONS
In this course students gain a working knowledge of the roles, functions, structures and constituencies of IT organizations. Topics include major IT systems and terminology, planning, compliance, quality assurance, environmental responsibility and internal/external customer relations. Theory/Lab. Prerequisite: ITD 2413.

ITD 3201
EMPLOYMENT ORIENTATION
This course focuses on employment and career readiness. Upon completion of this course, students will have demonstrated job readiness as well as the ability to articulate their professional goals, and developed the materials and skills necessary to secure appropriate employment. Topics include employment procedures and guidelines, career planning and job searches and common workplace issues. Theory. Prerequisites: Students must have completed no less than 24 credit hours of technical coursework towards degree and have a minimum 2.5 cumulative GPA.

ITD 3233
DATA STRUCTURES USING C++
This course focuses on data structures using C++ and furthers student understanding of computer algorithms and efficient program design. Topics include algorithm development, data representation, sorts, trees, stacks and queues. Theory/Lab. Prerequisite: 1253.

ITD 3243
SERVER PROGRAMMING AND CONFIGURATION
In this course students learn server programming through the application of advanced development principles, tools, and technologies. Topics include Active Server Pages (ASP) and PHP; server configurations for web applications; database manipulation; Secure Sockets Layer (SSL); cookies; and JavaScript. Theory/Lab. Prerequisites: ITD 1353, ITD 2203.

ITD 3253
NETWORK ADMINISTRATION
This course focuses on network administration. Topics include: network design; installing and configuring network shares; monitoring, troubleshooting and optimizing system performance; and establishing system policies and procedure. Theory/Lab. Prerequisites: ITD 2153 and ITD 2223.

ITD 3323
ENTERPRISE FRAMEWORK PROGRAMMING
Through this course students gain a working knowledge of advanced topics in C# and the .NET platform. Topics include: C#, XML, database programming, source control and multithreading. Theory/Lab. Prerequisite: ITD 2263.

ITD 3333
DISTRIBUTED APPLICATION DEVELOPMENT
In this course students learn to develop enterprise applications. Topics include: data structures, web applications and interprocess communication. Theory/Lab. Prerequisite: ITD 2263.

ITD 3423
SECURE ELECTRONIC COMMERCE
In this course students explore secure e-commerce technologies, models and issues, and the evolution of e-commerce. Topics include digital currency methods, electronic transactions, public and private key infrastructure, smart cards and biometrics, web security,
legal and ethical issues, inventory management, secure shell, digital certificates and encryption technologies. Theory/Lab. Prerequisite: ITD 1353.

ITD 3433
DIGITAL FORENSICS
In this course students are introduced to the procedures and techniques used to identify, extract, validate, document and preserve electronic evidence. Topics include forensic tools, resources, policies and procedures. Theory/Lab. Prerequisites: ITD 1223, ITD 2223.

ITD 3443
NETWORK SECURITY
In this course students examine operating systems and network security. Topics include servers, encrypted files, intrusion detection, packet filtering, network monitoring, user and group permissions, security templates and firewalls. Theory/Lab. Prerequisites: ITD 1223, ITD 2223.

ITD 3463
DATABASE APPLICATION DEVELOPMENT
In this course, students create secure database applications using advanced database development tools and techniques. Topics include variable types, logic structures, creating and working with program units, subprograms and functions, Dynamic SQL, database development and utilization, access control and database security utilities. Theory/Lab. Prerequisite: ITD 1253, ITD 2203.

ITD 3513
INFORMATION SYSTEMS ASSURANCE
This course focuses on the system elements of information assurance and computer security. Topics include access control and integrity, system analysis, security in programming, network security, design and analysis methods for high assurance information systems, safety, system reliability, specification of mission-critical system properties, software and hardware validation, verification and certification. Theory/Lab.

ITD 3523
COMPUTER SECURITY
This course focuses on computer security from basic risk assessment to public key encryption. Topic include: confidentiality, integrity, and availability; threat, vulnerability, and risk; security controls and auditing; vulnerability scanning; encryption and cryptography, including Advanced Encryption Standard (AES) and public key systems; computer viruses; building secure and trusted software; the Orange Book and the Common Criteria; and data base security. Theory/Lab. Prerequisite: ITD 3443.

ITD 3533
SECURITY SYSTEM ADMINISTRATION
In this course, students learn to protect systems and networks from threats and vulnerabilities. Topics include provisioning; network procurement and installation; hardware and software systems for mission-critical enterprises; system configuration, integration and maintenance; as well as incident handling and response. Theory/Lab. Prerequisite: ITD 2223, ITD 2313.

ITD 3543
ENTERPRISE NETWORKING
In this course, students analyze virtual and physical infrastructure, as well as enterprise wireless and mobile platforms. Topics include the implementation, monitoring and troubleshooting of convergent network systems; mobile device integration and administration; wireless local area network (WLAN) security; virtualization management; and voice over Internet protocol (VoIP) technologies. Theory/Lab. Prerequisite: ITD 3253.

ITD 3563
EMERGING AND CONVERGING TECHNOLOGIES
This course provides students with opportunities to explore emerging and converging Information technologies and their implications. Topics vary by academic term. Theory/Lab. Prerequisites: Students must have completed ITD 1223 and no fewer than 21 additional credit hours of technical coursework towards degree.

ITD 3623
CONTROL SYSTEMS SECURITY
Through this course, students will gain a working knowledge of several control systems security issues, including common risks and mitigation strategies. Topics include: process control network communications, vulnerability identification, network monitoring and incident management. Theory/lab. Co-requisite: ITD 3443.

ITD 3633
IT ORGANIZATIONAL TRAINING
Through this course students will apply learning theory and instructional design principles to the development, delivery and evaluation of information technology-related training. Topics include needs analysis, learning theory, instructional techniques and technologies, implementation and evaluation. Theory/Lab. Prerequisite: Students must have completed no less than 24 credit hours of technical coursework toward the degree.
ITD 3653
FORENSICS PROGRAMMING
In this course, students will learn to develop and apply software tools and technologies to assist with the recovery, preservation, analysis and presentation of computer code and digital evidence. Topics include log file and registry parsing, analysis of memory and core dumps, assembly language, machine code, and stack analysis. Theory/Lab. Prerequisite: ITD 2313.

ITD 3663
MOBILE PROGRAMMING
Through this course, students will learn to write programs for mobile devices, as well as about key issues and concepts involved with mobile system programming. Topics include user interface design, data access models, network and device performance, and sometimes-connected networks. Theory/Lab. Prerequisites: ITD 1253 and ITD 1353.

ITD 3673
IT ENTERPRISE MANAGEMENT
This course focuses on the management of an IT enterprise. Topics include strategic planning and sourcing, needs assessment, vendor relations, budget and contract administration, project portfolio management, managing personnel and change, sustainability and major management/leadership methodologies. Theory/Lab. Prerequisite: ITD 3163.

ITD 3683
MOBILE AND NETWORK FORENSICS
Through this course, students apply advanced digital forensics techniques and technologies to complex information systems. Topics include mobile, network and storage forensics, alternate operation systems, and incident response. Prerequisite: ITD 3433.

ITD 3713
SOFTWARE DEVELOPMENT MANAGEMENT
Through this course, students learn to manage complex software development projects. Topics include software development project management, software engineering tools and techniques, and design patterns. Theory/Lab. Prerequisites: ITD 3323 and ITD 3333.

ITD 4113
IT PROJECT MANAGEMENT (CAPSTONE COURSE)
This course introduces students to the principles and application of project management techniques with an emphasis on the design and management of computer information systems projects. Topics include project planning, work team design, project estimation techniques, project reporting, identifying and controlling project risks, budgets, and quality assurance. Theory/Lab. Prerequisite: ITD 4800 or with the Division Chair approval; and a minimum 2.5 cumulative GPA. Co-requisite: ITD 4123.

ITD 4123
APPLIED RESEARCH AND DEVELOPMENT (CAPSTONE COURSE)
This course marks the culminating educational experience in Information Technologies, in which students work in multidisciplinary teams on substantial, applied research projects to investigate alternate solutions to real problems relating to employer productivity. The various projects require student teams to analyze potential design alternatives, interpret results, document best practices, and report their findings. Theory/Lab. Prerequisites: ITD 4800 or with the Division Chair approval; and a minimum 2.5 cumulative GPA. Co-requisite: ITD 4113.

ITD 4700
ENTREPRENEURSHIP
Through this course, students will gain a working knowledge of entrepreneurial practices, challenges and issues, and develop the core skills necessary for successful entrepreneurial careers. Lab. Prerequisites: ITD 3201, MGMT 2243 and approval by the entrepreneurship coordinator and the Division Chair.

ITD 4800 (1-12 CREDIT HOURS)
INTERNSHIP
This supervised internship marks a cooperative agreement between industry and education in which students utilize and refine previously learned skills, and gain a working knowledge of and experience with contemporary industry culture, standards and practices. Lab. Prerequisites: ITD 3201, a minimum 2.5 cumulative GPA, and approval by the internship coordinator and the Division Chair.

ITD 4900 (1-12 CREDIT HOURS)
ADVANCED INTERNSHIP
This advanced, supervised internship marks a cooperative agreement between industry and education in which students utilize and refine previously learned skills, and expand their working knowledge of and experiences with contemporary industry culture, standards and practices. Lab. Prerequisites: ITD 4800, a minimum 2.5 cumulative GPA, and approval by the internship coordinator and the Division Chair.
MASONRY (MASC)

These courses are a part of a Cooperative Alliance Agreement with technology centers and are not offered on the OSU Institute of Technology campus.

MASC 1101
INTRODUCTION TO MASONRY
Introduction Masonry will cover the historical materials, current materials, and processes used in masonry construction. Topics covered will address the safety concerns specific to masonry construction. The use of bricks and concrete blocks are explained along with the basic techniques for mixing mortar and laying masonry units. Theory.

MASC 1103
MASONRY DRAWINGS AND SPECIFICATIONS
Students will learn to read and interpret the drawings and specifications containing the details for masonry construction. Students will use a variety of mathematical formulas to calculate distances, areas and volumes common to masonry construction. Theory/Lab.

MASC 1105
MASONRY UNITS AND INSTALLATION TECHNIQUES
This course covers all types of concrete and clay masonry units and their applications. Students will learn the use of ties and reinforcing materials and the processes used in placing masonry units. Masonry layout, setup, mortar, cutting brick and block, laying to a line, making corners, tooling joints, patching and cleanup will all be covered in detail. Theory/Lab.

MASC 1111
MORTAR, TOOLS AND EQUIPMENT
The various types and properties of mortar and the materials used in the mixture, including admixtures, will be studied. Students will learn how to hand mix mortar, machine mix mortar and properly store mortar. Students will also learn to identify and use the various hand and power tools common to masonry construction. Safe operation and use of this equipment will also be covered. Theory/Lab.

MASC 1202
INTERPRETATION OF RESIDENTIAL DRAWINGS
This course covers the information a masonry contractor would need to complete the masonry work on a residence. This includes understanding the organization and format of plans; dimensioning and scaling; and estimating material quantities from the information on the plans. Theory/Lab.

MASC 1203
RESIDENTIAL MASONRY
This course will covers masonry techniques for residential and small structure foundations, steps, patios, decks, chimneys, and fireplaces. Work activities that the masonry contractor must perform as well as other construction activities that interface with masonry work are described. Theory/Lab.

MASC 1212
CONSTRUCTION INSPECTION AND QUALITY CONTROL
This course introduces the student to the quality control requirements for masonry construction. Topics covered include procedures for inspection, testing of masonry materials and finished masonry construction. Theory.

MASC 1213
CONSTRUCTION TECHNIQUES AND MOISTURE CONTROL
This course will cover the techniques used to construct openings in masonry walls, the application of insulation, and methods of moisture control as they relate to masonry construction. The various properties and materials used in moisture control and insulation are discussed in depth. Theory/Lab.

MASC 2302
COMMERCIAL DRAWINGS
This course explores the format and content of commercial drawings and their use in conveying specific construction requirements. Fourteen different commercial drawings will be used for this course. The Construction Specification Institute (CSI) Master Format will be studied in detail. Theory/Lab.

MASC 2305
SPECIALIZED MATERIALS AND TECHNIQUES
This course introduces the student to the many specialized materials and techniques used in masonry construction. Items covered will include properties and work requirements for such materials as natural and cultured stone, acid brick, refractory brick, glazed tile, and glass block. Methods and techniques used for working in hot/cold weather conditions will also be discussed. Theory/Lab.

MASC 2312
GROUT AND OTHER REINFORCEMENT
This course focuses on the use of grout and other types of reinforcement such as reinforcing steel to strengthen and support masonry structures. The various locations and techniques used for grout placement will be discussed. The
uses and application of various types of reinforcing steel will also be covered. Theory/Lab.

MASC 2402
PROJECT PLANNING AND SUPERVISION
This course will cover the basics of project planning and scheduling as well as coordination and communication of work assignments to masonry work crews and other trades and crafts. Project setup and material purchasing requirements will also be discussed. Theory.

MASC 2403
ESTIMATING MASONRY
This course covers the basic procedures for quantity take-off of materials and application of labor units in determining the cost of a masonry job. Several different methods of estimating are explored in this course. Theory/Lab.

MASC 2413
MASONRY HIGH-RISE CONSTRUCTION
This course examines the activities involved in organizing and implementing the construction of high-rise buildings. The course focuses on the masonry construction techniques used in high-rise construction. Safety and logistics are emphasized. Theory.

MASC 2423
ADVANCED LAYING TECHNIQUES
Topics covered include detailed information that directs the mason in accomplishing the actual construction of walls, arches, and other useful structures. Construction techniques, safety requirements, and interaction with structural components are explained. Skill is gained through construction of small projects. Theory/Lab.

MATHEMATICS (MATH)

MATH 0143
MATH FUNDAMENTALS
This course emphasizes areas of mathematics that may be directly applied to practical, real-world situations. It will prepare students for entry into a college-level mathematics course, placing emphasis on math at the pre-college level. Topics covered include application of adding, subtracting, multiplying and dividing with whole numbers, fractions, decimals, problems with percent and ratio and proportion. This is a competency-based course and the student’s COMPASS test scores determine placement. This course will not count toward graduation or any degree program. Theory.

MATH 0153
ALGEBRA FUNDAMENTALS
This course emphasizes areas of elementary algebra that may be directly applied to practical, real-world situations. It is designed to build on skills learned in basic math, and establish a foundation in algebraic concepts and problem solving to prepare students for entry into a college-level algebra course. This is a competency-based course and the student’s COMPASS test scores determine placement. This course will not count toward graduation or any degree program. Theory. Note: available online.

MATH 0163
INTERMEDIATE ALGEBRA
This is a review of fundamental operations of algebra involving first degree equations, simple quadratic equations, equations with two variable and systems of equations and inequalities. One year of high school algebra is recommended. This is an excellent refresher course for those students needing MATH 1513. Theory. Note: available online.

MATH 1493
MATH FOR CRITICAL THINKING
This course is a study of the fundamental structures of mathematics for non-math or non-science/engineering majors. Topics include problem-solving, estimation, set theory, logic, number theory, algebraic equations, the qualities, and applications. Theory.

MATH 1513 (A)
COLLEGE ALGEBRA
Quadratic equations, functions and graphs, inequalities, systems of equations, exponential and logarithmic functions, determinants, permutations and combinations and the binomial theorem are all covered in this course. Theory. Prerequisites: MATH 0163 or two years high school algebra or a sufficiently high score on the COMPASS entry assessment test. Note: available online.

MATH 1613 (A)
TRIGONOMETRY
The major emphasis in this course is on solving right and oblique triangles with applications. Radian measure and graphing of trigonometric functions, complex numbers and solving logarithmic and exponential functions, and vector analysis are also covered. Theory.

MATH 2003
BUSINESS MATHEMATICS
Applications of mathematical principles of business are discussed. Topics covered include trade and cash
discounts, mark up and mark down, payroll and simple and compound interest. Theory.

MATH 2144
CALCULUS I
An introduction to derivatives, integrals, and their applications. Theory. Prerequisites: MATH 1513, MATH 1613.

MATH 2153
CALCULUS II
A continuation of 2144, including series and their applications, elementary geometry of three dimensions and introductory calculus of vector functions. Theory. Prerequisite: MATH 2144.

MATH 2423
MATH CONCEPTS FOR EDUCATORS
This is a course designed to provide the foundations for teaching arithmetic and geometry on the elementary level. Origins of numerals, number bases, systems of whole numbers, integers, rational numbers, real numbers, and intuitive geometry are some of the topics included in the course. The course also focuses on current issues in mathematics education and research as well as the use of microcomputers in mathematics education. Theory.

MATH 2713 (A)
ELEMENTARY CALCULUS
This course includes algebraic functions and their graphs, derivatives, techniques and applications, integration of algebraic functions and applications of the definite integral. Theory. Prerequisite: MATH 1513 or equivalent, or Division Chair approval.

MATH 3103 (A)
DISCRETE MATHEMATICS
In this course, students investigate discrete mathematical concepts, to include: logic, Boolean algebra, probability and combinatorics, set theory, proofs, proof techniques, relations, functions, graph theory and trees. Theory. Prerequisites: MATH 1513 and STAT 2013 or Division Chair approval.

MECHANICAL AGRICULTURE (MCAG)

MCAG 1113
EQUIPMENT SAFETY AND OPERATION
Through theory and hands-on activities the student will be introduced to agriculture machinery and its principles of operation. The safety procedures regarding the equipment operations will be heavily emphasized. The students will learn how to operate, calibrate, and identify problems in agriculture machines (tractor, combine, sprayer, planters). Also they will learn the components of the machinery and be introduced to where sensors, actuators, valves, and other elements of precision agriculture related equipments should be installed on a specific machine. Theory/Lab.

MCAG 1213
BASIC AGRICULTURE ELECTRONICS
This course offers instruction in basic concepts associated with agriculture electronic devices. Skills regarding the uses of electronic diagnostic instruments, repair tools and other basic electronic skills necessary to troubleshoot repair and install agriculture electronic and mechanical control devices associated with applications of Precision Agriculture will be emphasized. Theory/Lab.

MCAG 1223
BASIC AGRICULTURE HYDRAULICS
This course is a study of the fundamentals, theory and application of mobile hydraulic principles. Students will locate and identify machine components from schematics; draw and read schematics; and identify fittings, seals and components used in hydraulic systems on agricultural and construction equipment. Pascal’s Law will be used to calculate energy-work-power relationships. Hydraulic principles and operation of pumps, control valves, actuators, and fluid conditioners used on modern equipment will be covered. Failure analysis, diagnostics, and reconditioning of hydraulic components are also included. Theory/Lab.

MCAG 2023
AGRICULTURE ELECTRONIC DEVICES AND SYSTEMS
This course offers instruction on control and instrument systems including sensor and actuator principles, interface electronics, system identification, installation and set-up. Applications within the context of precision agriculture to include GPS, auto-steer, auto-guidance system, spray controller systems, and optical sensors applications will be stressed. Theory/Lab. Prerequisite: MGAC 1213 or Division Chair approval.

MANAGEMENT (MGMT)

MGMT 2243
SMALL BUSINESS MANAGEMENT
This course is designed for those individuals considering going into business for themselves. Emphasis is given to governmental regulations, financial needs, location factors, purchasing and pricing, inventory, advertising, bookkeeping, tax records and reports, banking, choosing
personnel and credit and collections. Theory. Note: available online.

MGMT 2313
PRINCIPLES OF MANAGEMENT
This course is an introduction to the basic theory and principles of management. Emphasis is on the functions of management: planning, organizing, staffing, directing, and controlling. A survey approach to current trends in management and possible future developments in organization and administration is used. Theory.

MGMT 2413
SUPERVISORY MANAGEMENT
This course covers problems of first-line managers as well as skills needed to lead, coordinate, direct, and control the work of others to achieve organizational goals. Theory. Prerequisite: PSYC 1113 or PSYC 2313; or Division Chair approval.

MGMT 2603
HUMAN RESOURCE MANAGEMENT
This course is an interactive study of the operating environments, policy development and other functions typical of the expanding field of Human Resource Management (HRM) and Development (HRD). Theory.

MGMT 2913 (D)
LEADERSHIP AND ORGANIZATIONAL BEHAVIOR
Through this course, students will gain an advanced understanding of organizational and behavioral dynamics in contemporary professional environments, as well as develop and enhance their own organizational and leadership skills. Topics include leadership patterns, resource management, diversity, professional growth, motivation, organizational development and change implementation, group dynamics and performance improvement. Theory.

MARKETING (MKTG)

MKTG 2153
MARKETING PRINCIPLES
The marketing principles course examines the methods and principles used by professional marketing executives. Careers in marketing and business administration and how they relate to the business environment will be examined. Theory. For Career Technology Centers only.

MULTIMEDIA TECHNOLOGY (MMT)

MMT 1113
INTRODUCTION TO 3D
In this course, students will be introduced to the Maya interface and learn the fundamental techniques to model objects, environments, and characters; and utilize primitive elements to build more sophisticated pieces. They will use proper procedure, workflow, modeling tools, texture mapping, and basic lighting to create 3D models.

MMT 1143
INTRO TO MOTION GRAPHICS
This course is an introduction to terminology and concepts of Motion Graphics. Students will gain hands-on experience learning core concepts of making things move on screen to communicate emotions and ideas. The skills acquired in this class prepare the student for Multimedia Authoring and Post Production Graphics I. Theory/Lab. Prerequisites: VIS 1123, GRD 1143.

MMT 1153
INTRO TO VIDEO EDITING
Using provided footage, students will learn the solid fundamentals of building sequence and story through the use of editing techniques. Class activities will include the study of classic movies and a variety of approaches to editing, focused on pacing, meaning, and emotional content. Prerequisite: MMT1453.

MMT 1201
ACTING & IMPROVISATION
Artists in general and animators in particular, whether in 2D or 3D, are essentially actors, conveying emotion through physical and emotional expression. Using improvisation techniques, students will learn how to think quickly, and to speak and move according to the emotion needing to be communicated.

MMT 1202
CREATIVE PROBLEM SOLVING
Creativity is the ability to see past the ordinary, to observe things in new ways and new combinations. It is a skill, and there are numerous techniques for enhancing and strengthening one’s creative abilities. This class will stress visual observation, puzzle solving and techniques for breaking out of self-imposed critical limitations.

MMT 1223
3D MODELING I
This course continues directly from Introduction to 3D, refining our understanding of using polygons, NURBS and
Sub-Divisions to model more complex objects and environments. We will go into greater depth on texture mapping, UV editing and shader networks. Perquisites: MMT 1113, GRD 1133, GRD 1143.

MMT 1233
AUDIO PRODUCTION
This course introduces students to the concepts of designing web audio. Students will learn the basic science of sound and digital audio and how to apply that knowledge to various applications. Students will capture audio from a source and apply noise removal, process, mixdown, and export a variety of codecs. Theory/Lab. Prerequisite: VIS 1143.

MMT 1243
VIDEO LIGHTING AND SET DESIGN
In this course students will develop skills in using light and set design in a variety of video production situations. They will examine the difference in lighting for stills and movement, and the difference between direct and indirect lighting. They will explore the use of color, temperature, and contrast, using a variety of accessories as needed to provide effective illumination and to create the desired mood. Theory/Lab. Prerequisite: MMT 1153.

MMT 1303
MULTIMEDIA AUTHORING I
This course builds on the skills acquired in Intro to Motions Graphics, using the wide range of Flash techniques for creating content, and learning ActionScript 3.0 programming to control that content on stage. Students will rely on printed instructions, lectures, and online tutorials. Theory/Lab. Prerequisites: VIS 1143, GRD 1133.

MMT 1323
3D MODELING II
This class will cover the creation, development and execution of an original character, suitable prop and related environment following the industry standard process for development. Basic Rigging concepts will also be introduced. Prerequisites: MMT 1223, GRD 1243.

MMT 1433
2D ANIMATION
This course is an introduction to the techniques, concepts and terminology of animation, based on the 12 Principles of Animation and using Flash CS5 software. Starting with simple animations of squares and circles, the class will progress to character animation and storytelling.. Prerequisites: GRD 1133, GRD 1143, MMT1201.

MMT 1453
STORYBOARDING
This class will cover the basics of staging and continuity, with an emphasis on dramatic storytelling. Final boards will be timed in Flash to produce an animatic. Good drawing skills are a must. Students will work on paper rather than digitally until the animatic phase so as to maximize the learning of the storyboarding process. Prerequisites: GRD 1243, MMT 1401.

MMT 1463
BEGINNING ZBRUSH
ZBrush is one of the most powerful and widely used modeling tools in the film and game industries. Students will learn the fundamentals of sculpting objects, how to modify them in other programs such as Maya and Photoshop, before taking them back into zBrush for final polishing. The class will work in tandem with MMT1323-Modeling 2. Prerequisites: MMT 1223.

MMT 2113
GAME DESIGN FUNDAMENTALS
Students will learn and execute the fundamentals of styles of play, rules of engagement, development of levels, interface design, character development, storytelling, different kinds of game worlds, game play and the user experience. Prerequisites: GRD 1243, MMT1453, VIS 2533.

MMT 2143
3D MOTION GRAPHICS & SPECIAL EFFECTS
Using After Effects, the industry standard compositing and effects software, students will combine various types of footage (stills, 3D animation, live footage, text, etc.) into motion graphic sequences, adding special light and motion effects and even creating new material within the software. Prerequisites: MMT 2433, MMT 1453, MMT 1153.

MMT 2213
DATABASE/PROGRAMMING CONCEPTS
This course introduces students to the basic concepts of programming and databases. Knowledge and skills gained in this course will be utilized in advanced web design classes. Theory/Lab. Prerequisite: MMT 1303.

MMT 2253
VIDEO POST PRODUCTION I
In this course students will take video to DVD production. A variety of DVD authoring software will be used to create menus, organize content, and export to DVD and export video for web use, using multiple codecs and containers. Theory/Lab. Co-requisite: MMT 2463.
MMT 2263
VIDEO POST PRODUCTION II
In this course students will plan, organize, and execute a major video production. Students will participate as an active member of a production crew that will interact with a live client in producing a finished title. Theory/Lab. Prerequisite: MMT 2253.

MMT 2423
INTRODUCTION TO WEB DESIGN
This course is an introduction to the basic concepts of web site design and production. Students will be exposed to XHTML, tables, CSS, and web graphics. Students will be introduced to basic web production software including Photoshop, html editors, and Dreamweaver. Students will utilize the Internet as a source of research and teaching/learning delivery. Students will produce and maintain a personal online web site. Theory/Lab. Co-requisite: VIS 1123.

MMT 2433
3D ANIMATION I
After a character is modeled, textured, and rigged, it’s time to animate the figure. This class will concentrate on introducing the techniques and principles of classic animation and how to achieve them via the Maya tool set. Prerequisites: MMT1433, MMT1323, MMT1201, MMT 1453.

MMT 2453
INTERFACE DESIGN-WEB
This course teaches sound basic interface principles for designing user-friendly, intuitive websites. Topics include navigation, readability, accessibility, and layout styles based on targeted end-users. Theory/Lab.

MMT 2463
INTERFACE DESIGN-DVD
This course teaches sound basic interface principles for designing user-friendly, intuitive DVD menu systems. Topics include navigation, readability, accessibility, and layout styles based on targeted end-users. Theory/Lab.

MMT 2513
MULTIMEDIA AUTHORING II
This course builds on the skills acquired in Multimedia Authoring I. Students will produce interactive multimedia applications utilizing advanced authoring and script writing techniques. Emphasis in this course is on Flash ActionScript, Flash Components, Adobe Flex, and Adobe After Effects. Theory/Lab. Prerequisite: MMT 1303.

MMT 2533
3D ANIMATION II
Students will continue to refine their animation skills up to the point where we start on the final project: conceiving, storyboarding, and animating an original 11 second animation for the 11 Second Club monthly contest. Basic lighting and rendering will also be introduced. Prerequisites: MMT 2433.

MMT 2543
WEB SITE PLANNING AND DESIGN
This course explores advanced principles of web site architecture, planning and production. This project-based class will allow students to experiment with various Internet production software. Students will produce, upload to a server, and maintain the web site project. Theory/Lab. Prerequisites: MMT 2513, MMT 2453.

MMT 2716
MULTIMEDIA CAPSTONE
This course represents the final culmination of the program of study involving either hypothetical or live assignments and incorporates all of the learning objectives. An interactive CD and Internet web site of work produced, including resume, will be required for job preparation and real job interviewing. Post-tests will be administered and included in the student’s final grade. Theory/Lab. Prerequisites: All required MMT courses or the Division Chair’s approval.

MMT 2800 (6-12 CREDIT HOURS)
MULTIMEDIA INTERNSHIP
This course consists of on-the-job training in industry. It emphasizes supervised employment and observation. Lab. Prerequisites: MMT 2513 or the Division Chair’s approval and have a minimum GPA of 2.0. Prerequisites: VIS 2533, VIS 2443.

MUSCOGEE CREEK NATION (MVSK)

These courses are offered through OSU Institute of Technology on behalf of the College of the Muscogee Nation.

MVSK 1113 (H)
NATIVE AMERICAN HISTORY
This course is designed to provide a brief overview of Pre-Columbian North American history and a more detailed examination of Oklahoma American Indian History to November 1907. The course will assist students in gaining a basic and fundamental knowledge of First American Oklahoma history from a perspective seldom explored and often ignored by academia. Students will learn the
significance of the American Indian to the development of Oklahoma and the government of the United States of America. Theory. Prerequisites: None.

MVSK 1123
BEGINNING CREEK LANGUAGE
In this class, students will learn basic phrases, expressions, methods of communication in the Creek language. Beginning level conversational proficiency will be emphasized. Theory.

MVSK 1133
INTERMEDIATE CREEK LANGUAGE
This class will be a continuation of the Beginning Creek Language with an additional focus on reading, writing and comprehending the language. Activities will emphasize Creek language interaction among students for achieving a higher level of conversational proficiency. Theory. Prerequisite: MVSK 1123 or permission of instructor.

MVSK 1213 (H)
NATIVE AMERICAN TRIBAL GOVERNMENT
The course is designed to provide a brief overview of selected North American Indian Tribal Governments. The course will expose students to various methods used in the development of Tribal Governments, their Constitutions, laws, and organizations. Some Pre-Columbian history will be examined as it applies to modern federal tribal governments. Theory. Prerequisite: None.

MVSK 1233
HEALTH CARE SYSTEMS/OPERATION
An overview of health care delivery systems including different models and components and their applications. A brief historical summary, the interface of public and private organizations, and review of the various personnel who comprise these systems, will be examined in relation to their impact on health care delivery. (NOTE: Funding is available through College of the Muscogee Nation. Not eligible for Federal Financial Aid for MVSK courses.)

MVSK 1243
HEALTH CARE CODING/BILLING
This course covers procedural coding guidelines for the ICD-9-CM classifications, CPT coding, evaluation and management, primary care, anesthesia/general surgery, the integumentary system, orthopedics, cardiology, OB/GYN, radiology, pathology and laboratory, billing and collections, filing the claim form, handling reimbursement and auditing/appeals. (NOTE: Funding is available through College of the Muscogee Nation. Not eligible for Federal Financial Aid for MVSK courses.)

MVSK 1353
HUMAN RELATIONS (S)
The course focuses upon a better understanding of human behavior as related to interpersonal relations on the job. Foundations of human behavior, strategies for effective human relations, fundamental skills of working as a team leader and team member, and ways of anticipating, preventing, and coping with challenges of human relations are major areas of study.

MVSK 2013
ADVANCED MVSKOKE LANGUAGE
This course is designed to give students intensive practice at the advanced level of reading, writing and speaking the Muscogee language. Listening and speaking skills will be emphasized in class. Students will write a series of brief compositions and focus on developing new vocabulary. Students will participate in simulated conversations using the Muscogee language. Theory. Prerequisites: MVSK 1123, MVSK 1133 or permission of instructor.

MVSK 2053
INDIAN LAND ISSUES
This course will provide an overview of the Federal land tenure system, Indian land history and Indian land law. It will also identify the roles of the various disciplines with trust duties involving Indian land tenure. Theory.

MVSK 2113
TRIBAL COURT SYSTEMS
This course is designed to provide an overview of American Indian Tribal Court Systems. This course will expose student to Tribal Court Systems and its role in the Tribal Government and law enforcement within Tribal jurisdictions. (NOTE: Funding is available through College of the Muscogee Nation. Not eligible for Federal Financial Aid for MVSK courses.)

MVSK 2133
CONVERSATIONAL MVSKOKE LANGUAGE
This class will focus on listening and speaking the Creek language with intense practice on topics of everyday life. Theory.

MVSK 2153
GRANT WRITING
This class teaches the mechanics of proposal writing and the political and social aspects of “grantsmanship.” Students will develop skills in identifying sources of grant funding, doing useful research to support their applications, and tailoring their proposals to specific audience interests. Theory.
MVSK 2163
PROJECT MANAGEMENT (SERVICE LEARNING)
This course is a form of experiential learning. Students will plan, implement and participate in a tribal community service project to develop a better understanding of the project management function. The course culminates with students developing a portfolio of their service learning experience that addresses local needs, documents civic responsibility and highlights project achievements. (NOTE: Funding is available through College of the Muscogee Nation. Not eligible for Federal Financial Aid for MVSK courses.)

MVSK 2223
FEDERAL INDIAN LAW
This course will focus on the nature and scope of Indian law including the legal framework of the government to government relationship between tribal, federal, and state governments. A historical overview of federal Indian relations and policy will be provided, including basic doctrines of federal Indian law. (NOTE: Funding is available through College of the Muscogee Nation. Not eligible for Federal Financial Aid for MVSK courses.)

MVSK 2243
HISTORY OF THE MVSKOKE
Historical perspective of the Mvskokvlke, pertinent documents, historical figures, and analysis of events. (NOTE: Funding is available through College of the Muscogee Nation. Not eligible for Federal Financial Aid for MVSK courses.)

MVSK 2253
MVSKOKE PRACTICUM: READING AND WRITING MVSKOKE
This course emphasizes integration of skills and strategies for reading and writing, including comprehension, vocabulary, fluency, sentence structure, and writing Mvskoke. Theory.

MVSK 2273
GOVERNMENTAL ACCOUNTING
This course will study budgetary and financial accounting/reporting as applied at the state, local, and special-purpose governments; financial accounting and reporting for not-for-profit organizations. Prerequisite: ACCT 2103. (NOTE: Funding is available through College of the Muscogee Nation. Not eligible for Federal Financial Aid for MVSK courses.)

MVSK 2323
CONTEMPORARY MVSKOKE LIFE
The Mvskoke have preserved traditions and created new celebrations reflecting a unique contemporary way of life. Food, art, ceremony, clothing are distinctive as they are modern. (NOTE: Funding is available through College of the Muscogee Nation. Not eligible for Federal Financial Aid for MVSK courses.)

MVSK 2333
MVSKOKE LITERACY PROJECT (SERVICE LEARNING)
This course is a form of experiential learning. Students will plan, implement and participate in a tribal community service project to develop Mvskoke literacy. The course culminates with students developing a portfolio of their service learning experience that addresses local needs, documents civic responsibility and highlights project achievements. (NOTE: Funding is available through College of the Muscogee Nation. Not eligible for Federal Financial Aid for MVSK courses.)

MVSK 2423
THE CONTEMPORARY MVSKOKE COMMUNITY (SERVICE LEARNING)
This course is a form of experiential learning that focuses on today’s Mvskoke community. Students will assess, design and implement a small project that will serve a community’s need. The course culminates with students developing a portfolio of their service learning experience that addresses local needs, documents civic responsibility and highlights project achievements. (NOTE: Funding is available through College of the Muscogee Nation. Not eligible for Federal Financial Aid for MVSK courses.)

MVSK 2433
MVSKOKE PRACTICUM: NEW SPEAKERS PRACTICE
Focuses on listening and speaking, providing the opportunity to function in the Mvskoke language in a variety of everyday situations. (NOTE: Funding is available through College of the Muscogee Nation. Not eligible for Federal Financial Aid for MVSK courses.)

MVSK 2513
COMMUNITY HEALTH
This course is designed to create an awareness of current trends, basic issues, controversial issues and fundamental principles in health promotion and health education. Particular emphasis will be placed in promoting the physical, mental and social welfare of Native American citizens in schools and communities based on The Healthy People 2000: Health Promotion and Disease Prevention Objectives. Theory.
MVK 2523 (S)
PERSONAL AND FAMILY LIVING
This course is designed to empower students to take action for the well being of themselves and others as they effectively manage the roles and responsibilities created by family, career and community interactions. Theory.

MVK 2533
UTILIZATION OF COMMUNITY RESOURCES
Students will be taught the value of fostering good community relations that directly impact program services. The function of various community services will be assessed as well as the study of those resources to enhance the quality of assistance to clients. (NOTE: Funding is available through College of the Muscogee Nation. Not eligible for Federal Financial Aid for MVK courses.)

NUTRITIONAL SCIENCES (NSCI)
NSCI 1113 (N)
INTRODUCTION TO NUTRITION
This introductory course explores functions of the nutrients in human life process and relationship to disease and health conditions, including nutrient relationship to health as a basis for food choices. Theory. Prerequisite: The Division Chair’s approval.

NURSING (NURS)
NURS 1113
EKG INTERPRETATION
This course begins with a discussion of the physiology of cardiac conduction, and then covers the basics of how to read an EKG strip, and the normal components of the EKG waveform. We will then examine basic cardiac dysrhythmias, including atrial and ventricular dysrhythmias, and blocks. Finally, selected nursing diagnoses for patients with dysrhythmias will be offered, along with suggested associated nursing interventions.

NURS 1123
DISEASES AND DIAGNOSTIC METHODS
This course examines the etiology, signs and symptoms, diagnostic procedures, treatment, prognosis, and prevention of selected diseases and disorders for each body system. (Prerequisite: None).

NURS 1128
FOUNDATIONS OF NURSING
This course allows the student to utilize theoretical knowledge, nursing process and clinical skills to meet the biological-psychological-sociological-spiritual needs of individual adults experiencing medical-surgical disorders. Theory related to an expanded assessment is presented and emphasis is placed on the students functioning more independently when providing client care within an interdisciplinary framework. Professional growth and personal accountability are stressed throughout the course. Skills associated with the role of the nurse are the primary focus. Admittance to the nursing program required to take this course. Concurrent enrollment in NURS 1322, unless previously taken NURS 1322 and passed.

NURS 1132
PRE-NURSING PREPARATION
The Pre-Nursing Preparation course has been designed to promote success in the nursing program. Students will be assisted in evaluating their own learning styles and discovering their most effective study methods. An explanation of cognitive levels of test questions is included, with emphasis on application-style questions found in nursing course exams, as well as in the national licensure exam. Exercises in critical thinking will be integrated throughout the course. Exposure to the use of nursing informatics and time management skills will further enhance the student’s probability of success in the nursing program. Student must be in good academic standing and having completed all remedial coursework prior to enrolling in this course.

NURS 1133
LPN TO RN TRANSITION (LPN ONLY)
This course is designed to provide career mobility for the eligible licensed practical nurse. The course provides an introduction to the nursing process with a focus on man’s adaptation to meet his basic needs. Skills in interpersonal relationships and physical assessment will be developed with special emphasis on nursing process, communication, values clarification and role change. A review of dosage calculation methods will also occur. Pre-requisite: NURS 1229, LPN’s only.

NURS 1143
PROFESSIONALISM IN HEALTHCARE
This course provides an understanding of the importance of professionalism and the need to perform in a professional, ethical, legal, and competent manner. This course will describe professional standards that apply to all health care workers- the “common ground” that everyone shares in providing the highest quality of health care and service excellence for patients, visitors, and guests.
NURS 1229
NURSING CARE OF FAMILIES

In this course, the student will utilize theoretical knowledge, nursing process and clinical skills to meet the individual needs of the client during the developmental processes of pregnancy, birthing, post-partum, pediatric care, and psychiatric/mental health nursing. Growth and development and the management of common disease/abnormality processes of these components are addressed. The students will explore coping assistance and psychological considerations and abnormalities, including cultural factors. The role of the student, as a member in the profession, is expanded through the recognition of: 1) accountability, 2) identification, and 3) the desire for personal and professional development. Clinicals, laboratory skills, and theory are incorporated into the course to enable the students to plan and provide safe, quality nursing care for clients and their families in the above specified settings. The clinical component of this course utilizes theory content from NURS 1229, Nursing Care of Families. Prerequisite: NURS 1128, NURS 1322.

NURS 1322
NURSING DOSAGE CALCULATION

Math for Nurses is designed to introduce the nursing major to the mathematical skills essential for calculating medication dosages. Content includes conversion between metric, apothecaries, and household systems of measurement; calculation of oral and parenteral dosages; intravenous flow rate calculations; pediatric calculations; and intensive care calculations. Concurrent enrollment in NURS 1128 required, must pass both courses.

NURS 2003
PHARMACOLOGY IN NURSING

This course is designed to present basic concepts and principles of pharmacology and terminology used in pharmacology as related to the role of the nurse. Included will be sources of drug manufacturing, introduction to drug classifications, and the usage of drugs in the health status of individuals throughout the life span. Other related concepts will include legal and ethical responsibilities and considerations, and utilization of the nursing process when administering medication therapy. Pharmacology is also integrated throughout the nursing curriculum. Pre-requisite: NURS 1128. (Only students accepted into the OSUIT Nursing Program may enroll in this course, Nursing Elective.)

NURS 2091 OR 2092
INDIVIDUALIZED STUDY/SPECIAL PROJECTS

The study and/or analysis of a selected topic in Nursing, individual and/or group study allowed. These courses may be repeated with a different topic up to 9 credit hours. (Individualized Study, open to OSUIT enrolled Nursing Students only.)

NURS 2129
NURSING CARE OF ADULTS I

In this course, the student will utilize theoretical knowledge, nursing process and clinical skills to meet the biological-psychological-sociological needs of individual adults experiencing medical-surgical disorders. Theory related to an expanded assessment is presented and emphasis is placed on the students functioning more independently when providing client care within an interdisciplinary framework. Professional growth and personal accountability are stressed throughout the course. The clinical content of this course utilizes theory content from NURS 2129, Nursing Care of Adults I. Theory and campus laboratory skills enable the student to plan and provide care for clients with acute and chronic illnesses in clinical setting. Prerequisite: NURS 1229.

NURS 2222
NURSING CAPSTONE SEMINAR

The student will use the nursing process to analyze current trends and issues influencing nursing. The course will examine the impact of social and technologic changes in relation to the nursing profession and discuss ethical and legal issues; analyze concepts common to effective leadership and management; and assist in NCLEX-RN preparation. Co-requisite: NURS 2229.

NURS 2229
NURSING CARE OF ADULTS II

This course focuses on the provision of advanced care for adult clients in complex settings. The student will demonstrate an internalization of the nursing process in the coordination of care for individuals and groups of clients. In the roles of provider and manager of care the student will be providing the opportunity to practice accountability for their own nursing judgments and actions. The clinical component to this course utilizes theory from NURS 2229. Selected clinical experiences provide management and critical care opportunities for the student to apply concepts, principles, and skills acquired in related theory classes. Prerequisite: NURS 2129, co-requisite: NURS 2222.

NURS 2303
MEDICAL TERMINOLOGY

This courses focuses on development of competence in medical terminology, including root words in light of anatomy, physiology, and pathology; procedures of body
systems, diagnostic procedures, abbreviations, documentation guidelines, and pharmacology.

OFFICE INFORMATION SYSTEMS (OIS)

These courses are part of a Cooperative Alliance Agreement with technology centers and are not offered on the OSU Institute of Technology campus.

OIS 1013
OFFICE PROCEDURES
This course covers the office professional’s role and responsibilities in the office and in public relations. Office ergonomics; office communications including mail/shipment handling, telephone skills and telecommunications; meetings, conferences and travel arrangements; use of office equipment are included in this Office Information Systems Technology Career Cornerstone, which also provides a broad range of career information. Theory/Lab. Prerequisite: OIS 1323 or instructor approval.

OIS 1113
LEGAL TERMINOLOGY I
This course includes careers for legal secretaries, law office personnel/functions, ethics, state/federal court systems, introduction to prepare legal documents; spelling and defining legal terms and phrases. Theory.

OIS 1143
DESKTOP PUBLISHING
This course prepares the student to design and produce documents integrating graphics and text using electronic publishing software on personal computers. Theory. Prerequisite: OIS 1323 or CS 1013 or instructor approval.

OIS 1153
MEDICAL TERMINOLOGY I
This course teaches the spelling and meaning of medical terms, root words, prefixes, suffixes, multiple combinations, and basic anatomy. Theory.

OIS 1173
MEDICAL TERMINOLOGY II
This course is a continuation of Medical Terminology I and includes prefixes suffixes combining forms, basic anatomy, medical reports and forms. Theory. Prerequisite: OIS 1153.

OIS 1282
RECORDS MANAGEMENT
This course emphasizes principles and practices of effective records management for manual and automated systems. It cover rules for alphabetic, numeric, and subject filing and alphabetic indexing for computer databases. Theory.

OIS 1323
KEYBOARDING
This course develops keyboarding speed and accuracy on the personal computer through application of the touch methods, as well as formatting of letters and memos using word processing software. Theory/Lab.

OIS 1333
DOCUMENT PRODUCTION
This course provides continued development of keyboarding speed and accuracy on the personal computer and includes formatting office letters, memos, and administrative communications. Theory/Lab. Prerequisite: OIS 1323.

OIS 1343
ADVANCED DOCUMENT PRODUCTION
This course reinforces previously learned word processing skills and uses a project-based approach to develop advanced proficiency in managing documents using word processing software. Mailable documents requiring advanced formatting tools are created and edited. Theory. Prerequisite: OIS 1333.

OIS 1373
BUSINESS COMMUNICATIONS
This course emphasizes composition and preparation of written business communications. Elements of cultural diversity, proofreading and listening skills are also addressed. Theory.

OIS 1383
CUSTOMER SERVICE
Through this course students explore practices and models that promote positive and continuing relationships with internal and external customers, with emphasis on helping organizations exceed customer expectations. Theory/Lab.

OIS 1413
BUSINESS COMPUTER APPLICATIONS
Through this course, students will learn word processing, spreadsheet, database, and presentation software for the preparation of written business communications, financial records, charts and graphs, summary reports, and visual communications. Theory/Lab.
OIS 1423
INTEGRATED APPLICATIONS
In this course students integrate desktop applications of word processing, spreadsheets, database, and presentations in the completion of various office and administrative assignments. Theory/Lab.

OIS 1433
WEB DESIGN BASICS
Through this course students learn to design, develop, deploy and maintain web sites. Topics include mark-up languages, database integration and interactive web page development. Theory/Lab. Prerequisite: CS 1013.

OIS 2090
SPECIAL PROJECTS
Special projects utilize individual study under the supervision of an instructor. Projects may be undertaken in any area of office administration training with credit hours determined by level and amount of involvement. Theory/Lab. Prerequisite: the Division Chair’s approval.

OIS 2101
EMPLOYMENT ORIENTATION
This course focuses on employment and career readiness. Upon completion of this course, students will have demonstrated job readiness as well as the ability to articulate their professional goals, and developed the materials and skills necessary to secure appropriate employment. Topics include employment procedures and guidelines, career planning and job searches and common workplace issues. Theory. Prerequisites: Possess a minimum 2.5 cumulative GPA or have the Division Chair’s approval.

OIS 2503
DATABASE APPLICATIONS
This course will include database design, creation, maintenance and reporting using a microcomputer database application package. Theory.

OIS 2526
MEDICAL TRANSCRIPTION I
This course emphasizes transcription of medical dictation for physicians, hospitals and clinics and study of disease processes. Theory/Lab.

OIS 2573
ICD-9-CM CODING
This course studies the International Classification of Diseases, Ninth Revision, Clinical Modification (ICM-9-CM). Theory. Prerequisite: OIS 1173.

OIS 2583
ELECTRONIC MEDICAL OFFICE PROCEDURES
This course uses administrative software, such as Medisoft, to input patient information, schedule appointments, handle billing, produce lists and reports, and submit third-party payer claims for reimbursement. Theory.

OIS 2593
MEDICAL OFFICE PROCEDURES
This course includes responsibilities of the medical secretary, including medical specialties, chart notes, CPT coding, law, ethics and bioethics of the medical profession. Theory.

OIS 2683
PROJECT MANAGEMENT
This course introduces students to the principles and application of project management techniques with an emphasis on the design and management of business and administrative systems projects. Topics include project planning, work team design, project estimation techniques, project reporting, identifying and controlling project risks, budgets, and quality assurance. Theory/Lab.

OIS 2800 (1-12 CREDIT HOURS)
INTERNSHIP
This supervised internship marks a cooperative agreement between industry and education in which students utilize and refine previously learned skills, and gain a working knowledge of and experience with contemporary industry culture, standards and practices. Lab. Prerequisites: OIS 2101 and approval by the internship coordinator and the Division Chair.

OIS 2853
LEGAL TERMINOLOGY II
This course covers legal document preparation; basic reference materials; criminal, contracts, torts, real estate, wills and trusts, marriage and divorce principles and procedures, spelling and defining legal terms and phrases. Theory. Prerequisite: OIS 1113.

OIS 2863
LEGAL TERMINOLOGY III
This course includes legal document preparation, forms of business organization, bankruptcy, law library and citation of authorities, administrative agencies, spelling and defining legal terms and phrases. Theory. Prerequisite: OIS 1113.
OIS 2900 (1-12 CREDIT HOURS)
ADVANCED INTERNSHIP
This advanced supervised internship marks a cooperative agreement between industry and education in which students utilize and refine previously learned skills, and gain a working knowledge of and experience with contemporary industry culture, standards and practices. Lab. Prerequisites: OIS 2101 and approval by the internship coordinator and the Division Chair.

ORTHOTIC AND PROSTHETIC TECHNOLOGIES (OPT)

OPT 1204
UPPER EXTREMITY PROSTHETICS
Students will review kinesiology, biomechanics, and nervous supply of the upper extremity; and will practice safe lab procedures and material utilizations for varying designs of upper extremity prosthetic fabrication. Lecture will be given on all levels of upper extremity amputation, conventional components, principles of fabrication and harnessing. Repair/replacement and design criteria are covered, as are transhumeral and transradial external power components and techniques of fabrication and utilization properties of each. Theory/Lab. (An additional $300 (three hundred) charge for lab and material fees applies to this course.)

OPT 1214
SPINAL ORTHOTICS
This course provides a close examination of the normal anatomy of the human spine with concentration on biomechanics relating to technical design. Pathological study includes the effects of disease, injury and malformation of the spine and identification of those specific pathologies as related to functional loss and orthotic management. Lab safety and procedures will be emphasized. Students will also learn patient procedures in conjunction with fitting, adjusting and provision of prefabricated spinal orthoses within the identified American Board for Certification scope of practice for an Orthotic Fitter. Fabrication techniques, including material selection, design, adjustment and repair will be covered as well as procedures involved in providing prefabricated spinal orthoses. Theory/Lab. (An additional $300 (three hundred) charge for lab and material fees applies to this course.)

OPT 1304
TRANSTIBIAL PROSTHETICS
This course will cover physical deficits that result from limb loss following transtibial amputation. Different levels of transtibial and partial foot amputation, management, prosthetic materials and components, lab safety and equipment techniques as well as principles of fabrication, suspension and static alignment will also be covered. Theory/Lab. (An additional $300 (three hundred) charge for lab and material fees applies to this course.)

OPT 2101
ORIENTATION TO INTERNSHIP
This course is designed to prepare students to enter the professional environment first as orthotic and prosthetic interns, and then as entry-level employees. Students will explore and develop core transferrable skills including resume writing, interview strategies, time management and soft skills. The goal of this course is to prepare students for their internship experience in the O&P profession, and to enhance their ability to identify and obtain employment.

OPT 2314
PREFAB AND PEDORTHIC TECHNIQUES
This course is an Orthotic Fitters and Pedorthic education module. Facility practice procedures, fitting, adjusting and repair of the prefabricated orthoses will be taught. Students will also learn patient procedures in conjunction with that of an Orthotic Fitter - fitting, adjusting and provision of prefabricated lower extremity orthoses within the identified American Board for Certification scope of practice. Prescription criteria, fitting of prefabricated orthoses as indicated relating to disease, malformation and injury of the human condition will be covered. Topics relating to the education of the student in respect to pathomechanics, biomechanics and human anatomy all relating to the provision of prefabricated orthoses will be taught. This course offers an in depth study of the various disorders and injuries of the foot and ankle complex. It prepares the student to learn the proper clinical assessment techniques for individuals with normal or pathological lower extremity conditions. Additional topics include education pertaining to the normal anatomy of the foot and ankle, physical and biomechanical assessment of the foot, gait analysis, footwear analysis, and prescription criteria for the various pedorthic treatment modalities. Study of the ankle complex is covered with particular attention placed on anatomy and biomechanics. Theory/Lab. (An additional $250 (two hundred and fifty) charge for lab and material fees applies to this course.)

OPT 2324
LOWER EXTREMITY ORTHOTICS
Lab procedures, design, modification, fabrication, adjustment, and repair of lower extremity orthoses will be taught. Lab safety and procedures will be emphasized. Review of the ankle, knee and hip complex will be covered
with particular attention placed on anatomy and biomechanics. A brief overview of standing systems and reciprocating gait orthoses will be covered as well. Theory/Lab. (An additional $300 (three hundred) charge for lab and material fees applies to this course.)

OPT 2404
TRANSFEMORAL PROSTHETICS
Students will cover the physical deficits that result from limb loss following transfemoral amputation. Levels of amputation, medical management, materials and components, and principles of fabrication, dynamic alignment will be presented. Fabrication techniques, designs and component selection for various transfemoral amputations will be given. Fluid control mechanisms and various other types of knee units will be reviewed. Comprehensive lab safety and utilization will be covered. Theory/Lab. (An additional $300 (three hundred) charge for lab and material fees applies to this course.)

OPT 2414
UPPER EXTREMITY ORTHOTICS
This course covers the study of the normal anatomy and biomechanics of the upper extremity. Emphasis is on upper extremity pathology and the appropriate orthotic interventions. Students will be educated regarding lab procedures, safety, material choice and properties together with the design and fabrication of custom upper extremity orthoses. Theory/Lab. (An additional $300 (three hundred) charge for lab and material fees applies to this course.)

OPT 2812
INTERNSHIP (12 CREDIT HOURS)
The internship is a cooperative agreement between an approved orthotic and prosthetic facility and OSU Institute of Technology to offer supervised on-the-job professional experience to completing students. The internship provides the opportunity to apply concepts and practice in a real industry environment. Students are required to make arrangements with an approved facility one semester prior to the start of the course. Weekly reports are required to be submitted to the supervising faculty member. Theory/Lab. Prerequisite: The student must have completed a minimum of 12 hours of college credit in general education with a grade point average of 2.5 or better (in a 4.0 grading scale), completed a minimum of 24 hours of college credit in technical education in his/her program of study, and have been recommended by the faculty of his/her program of study.

ORIENTATION (ORIE)

ORIE 1011
COLLEGE STRATEGIES
This course is designed for freshman students and emphasizes the consideration of academic, social, vocational and other basic concerns common to first-year college students. Theory. Note: available online.

PHILOSOPHY (PHIL)

PHIL 1013 (H, S)
ETHICS OF LEADERSHIP
This course is designed to provide emerging and existing leaders the opportunity to explore philosophies of leadership and ethics in order to develop and improve their leadership skills. Emphasis is on integrity, personal morality, honest, and social responsibility. The course integrates readings from the humanities, experiential exercises, films, and case studies. Theory. Available online.

PHIL 1213 (H, S)
ETHICS
This course examines the types of situations that pose ethical problems in the workplace. Emphasis is on integrity, personal morality, honest and social responsibility. Case studies and comparison/contrast of legal/ethical issues are also discussed. Theory. Available online.

PHIL 1313 (H, S)
INTRODUCTION TO LOGIC
In this course, students investigate contemporary issues to develop the reasoning and analytical skills essential to the application of critical-thinking processes and principles. Topics include basic logical concepts and systems, language and arguments, symbols and translation, as well as deductive and inductive reasoning. Theory.

PHOTOGRAPHY (PHO)

PHO 1113
FUNDAMENTALS OF PHOTOGRAPHY
This course includes basic camera operation including shutter speed, aperture and their relation to exposure, types of and cameras, basic lighting and composition. Theory. Co-requisites: PHO 1123, PHO 1133.

PHO 1123
DIGITAL DARKROOM
This course is designed to introduce students to the processes and procedures of Macintosh OS basics,
including PhotoShop and Lightroom. Topics covered include histograms, image manipulation, color balance, layers, masking and digital workflow. Theory/Lab. Co-requisites: PHO 1113, PHO 1133.

PHO 1133
DIGITAL PHOTOGRAPHY
This course is designed to introduce students to the processes and procedures of digital photography. Students will work with digital cameras to capture images appropriate to the digital environment. Special consideration will be given to understanding the digital photographer’s workflow, including digital file types. Theory/Lab. Co-requisites: PHO 1113, PHO 1123.

PHO 1243
PHOTOGRAPHIC THINK TANK
This theory course explores current trends, technology, techniques, business and ethics in photography. Course will consist of discussion, lecture, electronic presentation and guest speakers from industry. Theory. Prerequisites: PHO 1113, PHO 1133, PHO 1123.

PHO 1313
STUDIO I
This course covers the photography topics of controlled light environment, electronic flash, incandescent lighting, special emphasis in lighting theory and application. Students will work with view camera systems. Theory/Lab. Prerequisites: PHO 1113, PHO 1133, PHO 1213 or Division Chair’s approval.

PHO 1353
PHOTOJOURNALISM
This course covers the topics of equipment, manipulation of photographic processes, adapting photographic skills to publication requirements, deadline and assignments and simple feature to complex photo essays. Theory/Lab. Prerequisite: PHO 1113, PHO 1123 or the Division Chair’s approval.

PHO 2090 (1-9 CREDIT HOURS)
SPECIAL PROJECTS
This course provides an individual study under the supervision of an instructor with credit hours to be determined by the complexity of the project. Projects may be undertaken in any area of photography. Theory/Lab. Prerequisite: The Division Chair’s approval.

PHO 2413
STUDIO II
This course covers advanced lighting techniques including portraiture, product and lighting for different surfaces using a variety of camera formats. Students will cover the American Society of Media Photographers professional business practices. Theory/Lab. Prerequisites: PHO 1313, PHO 2523 or the Division Chair’s approval.

PHO 2423
PORTRAIT PHOTOGRAPHY
This course includes advanced studio and location photography including special lighting, posing people, communication techniques, equipment demands and restrictions. Theory/Lab. Prerequisites: PHO 1313, PHO 2453 or the Division Chair’s approval.

PHO 2453
ADVANCED DIGITAL PHOTOGRAPHY
This course builds on the techniques and processes learned in Digital Photography. Students learn advanced digital camera techniques, color correction, prepress processes and digital workflow. Special emphasis will be placed on image scanning and output, image enhancement, file preparation, special effects and file manipulation. Theory/Lab. Prerequisites: PHO 1113, PHO 2523 or the Division Chair’s approval.

PHO 2483
COLOR AND DIGITAL CONCEPTS
An advanced color theory course exploring issues in digital color, digital photography and image file formats. Close attention will be given to color calibration. Various software packages are used to prepare color projects. Students develop an understanding of value and color as it applies to color models and will demonstrate knowledge of both printed and digital output. Emphasis is placed on problem solving, development of visual color acuity, understanding color harmony, calibration and imaging techniques, and the psychological, societal, and environmental impact of color. Theory/Lab. Prerequisites: PHO 1113, PHO 1133, PHO 1123 or Division Chair’s approval.

PHO 2503
INTRODUCTION TO VIDEO PRODUCTION
This course is an introduction to the concepts of digital video as related to lighting, shooting and editing. Students will gain hands-on experience in a variety of studio lighting scenarios, video pre-planning, shooting and post and Premier production using Final Cut Pro non-linear editing suites. This is a project oriented and collaborative learning experience. Theory/Lab. Prerequisite: PHO 2523. Photographic Design or the Division Chair’s approval.
PHO 2513
EDITORIAL PORTRAITURE
This course covers advanced applications of studio and location portrait techniques, with emphasis on personal expression and subject matter exploration. Students work with different types of lighting with emphasis on producing images suitable for publication. Theory/Lab. Prerequisite: PHO 2423 or the Division Chair’s approval.

PHO 2523
PHOTOGRAPHIC DESIGN
This course explores aesthetic considerations and communication methods used in effective graphic design with advanced camera, studio and location techniques to produce problem-solving photographic illustrations. Theory/Lab. Prerequisites: PHO 1113, PHO 1123, PHO 1133 or the Division Chair’s approval.

PHO 2696
PHOTOGRAPHY CAPSTONE
This course represents the final culmination of the program of study involving either hypothetical or live assignments and incorporates all of the learning objectives. A branded portfolio, interactive CD, Internet web site of work produced and resume will be required for job preparation and real job interviewing. Post-tests will be administered and included in the student’s final grade. Participation in an industry portfolio review and multiple industry interviews are required. Theory/Lab. Prerequisites: All required courses on the PHO plan of study or Division Chair approval.

PHO 2703
ADVERTISING PHOTOGRAPHY
This course covers advanced studio and location photography including the areas of catalog and advertising. Students will explore product lighting and work closely with the client and art director. Theory/Lab. Prerequisites: PHO 2413, PHO 2453 or the Division Chair’s approval.

PHO 2713
ADVANCED PORTRAIT PHOTOGRAPHY
This course explores applied studio and location portraiture directed toward challenging students to create expressive and innovative portraits while developing personal style for lighting, posing and personality interpretation. Theory/Lab. Prerequisite: PHO 2423 or the Division Chair’s approval.

PHO 2723
DOCUMENTARY PHOTOGRAPHY
This course includes advanced applications of News Photography. The student will also explore current social and cultural issues. Emphasis is on informative images that effectively communicate issues to the viewer. Theory/Lab. Prerequisites: PHO 1353, PHO 2763 or the Division Chair’s approval.

PHO 2763
ADVANCED PHOTOJOURNALISM PHOTOGRAPHY
Students apply the foundation of photojournalism to shooting action related topics utilizing specialized equipment suitable to the unique demands of this challenging aspect of photography. Theory/Lab. Prerequisites: PHO 1353, PHO 2453 or the Division Chair’s approval.

PHO 2773
VISUAL VALIDATION
Exploration of the student’s chosen interest area with emphasis placed on quality and concept. A body of work will be produced and formally presented to an audience in order to successfully complete the course. Theory/Lab. Prerequisites: PHO 2703 Advertising Photography, PHO 2513 Editorial Portraiture and PHO 2763 Advanced Photojournalism or the Division Chair’s approval.

PHO 2800 (3-12 CREDIT HOURS)
PHOTOGRAPHY INTERNSHIP
This course involves on-the-job training in industry. It emphasizes supervised employment and observation. Theory/Lab. Prerequisites: PHO 2713, PHO 2773 or the Division Chair’s approval and must have a minimum GPA of 2.0.

PHYSICAL SCIENCE (PHYS)

PHYS 0123
SCIENCE
This course is designed to prepare students for entry into a college level science course. This course familiarizes the student with the basic concepts of physics, chemistry, earth science and life science. Students will learn proper laboratory proceedings and be able to apply the scientific method in solving problems in the lab experiments. This course does not count toward graduation or any degree program. Placement in this course is determined by entry assessment scores. Theory/Lab.

PHYS 1114
GENERAL PHYSICS I
This course emphasizes the areas of mechanics and thermodynamics. The laboratory portion of the course utilizes computer-generated data and graphs. Theory/Lab. Prerequisites: MATH 1513, MATH 1613 or Division Chair approval.
PHYS 1204
GENERAL PHYSICAL SCIENCE
This is a lecture and demonstration course designed to assist students in interpreting their physical environments. Topics from astronomy, chemistry, geology and physics are covered. Theory/Lab. Note: One year of Algebra recommended.

PHYS 1214
GENERAL PHYSICS II
This course is a continuation of General Physics I (PHYS 1114), and includes topics from electricity, magnetism, light, optics and modern physics. Theory/Lab. Prerequisite: MATH 1513, PHYS 1114 or Division Chair approval.

PIPELINE INTEGRITY (PIT)

PIT 1113
INTRODUCTION TO PIPELINES AND FACILITIES
This course introduces students to the basics of the pipeline industry and the duties of a Pipeline Integrity Technologist. Students will gain an understanding about pipelines, products transported in pipelines, basic pipeline design and pipeline terminology. Theory/Lab.

PIT 1123
PIPELINE MATERIALS AND COMPONENTS
This course introduces students to the physical basics of a pipeline. Materials, processes used to manufacture pipe, and basic maintenance will be discussed in detail. Theory/Lab.

PIT 1213
PROCESSING AND PRODUCT HANDLING
This course will explore pipeline equipment maintenance schedules, operations and maintenance activities, failure investigation and a variety of maintenance and repair topics. Theory/Lab.

PIT 1223
INTRODUCTION TO CORROSION CONTROLS
This course introduces students to the various types of corrosion found in the pipeline industry. Students will study the different types of corrosion, the basics of cathodic protection, in-line inspections, coatings, and a variety of pipeline inspection techniques. This course will also examine both the application and management of pipeline corrosion. Students will also learn appropriate assessment and repair methods for pipeline corrosion. Theory/Lab.

PIT 2112
INTERNSHIP
An internship is a cooperative agreement between industry and education which allows students to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines and will be supervised by industry and school representatives. Prerequisites: Student must be in good academic standing and have successfully completed all required Pipeline Integrity, and Arts and Sciences courses. Exceptions will be made only upon written approval of the Engineering Technologies Division Chair. 12 Credit Hours. Prerequisites: recommendation by program instructor and a minimum overall GPA of 2.5. Theory/Lab.

PIT 2113
REGULATIONS AND COMPLIANCE
Students will examine the federal regulations that govern the operation of liquid and gas pipelines. Also included are industry specifications and guidelines applicable to pipeline integrity assessment. Theory/Lab.

PIT 2123
INTTEGRITY MANAGEMENT CONCEPTS I
This course examines the methodologies used to identify and evaluate pipeline defects. Topics covered include pipeline evaluation techniques including pigging, ultrasonic sampling, and leak detection surveys. Theory/Lab.

PIT 2213
PIPELINE MAINTENANCE AND REPAIR
This course examines general pipeline repair activities, mitigation/remediation of exposed pipeline, coatings and the creation of assessment reports. Theory/Lab.

PIT 2223
INTTEGRITY MANAGEMENT CONCEPTS II
Students will create assessment reports, create inline inspection programs, document predictive vs. actual anomalies, identify preventative/mitigative measures and explore requirements necessary to prevent pipeline incidents. Theory/Lab.

PIT 2232
NACE CP1 PREP
Students will prepare for the National Association of Corrosion Engineer’s level one examination. Theory/Lab.
PIT 2243
PIT 2243
CAPSTONE
The Capstone course is the culminating experience in Pipeline Integrity Technology. The course includes the fundamental theories and practices of pipeline integrity. It expands the concepts presented in previous work through simulation and actual problem resolution. Lab.
Prerequisites: program instructor approval and a minimum overall GPA of 2.5. Theory/Lab.

PLUMBING (PLBG)

PLBG 1104
PLUMBING SYSTEMS I
This course is designed for the individuals with little or no previous experience in the field. The course will include piping materials and methods of joining materials, and rough in procedures; also, the use of hand tools and power tools used in the industry. Safety of the job will be emphasized and the entry-level apprenticeship industry specific program will be introduced. Theory/Lab.

PLBG 1111
INTRODUCTION TO PLUMBING TECHNOLOGY
Orientation into the world of plumbing technology including career opportunity exploration, licensing requirements, safety, tools and your college strategies. Theory/Lab.

PLBG 1202
ADVANCED PLUMBING SYSTEMS
Design, modification, and maintenance of plumbing systems will be studied in relationship with the current plumbing code and applications observed and practiced during the internship. Theory/Lab.

PLBG 1215
PLUMBING INTERNSHIP I
This internship will be a cooperative agreement between industry and education which allows the student to utilize and refine skills learned in their educational process. All work is to be performed in accordance with the plumbing industry standards and will be supervised by plumbing contractors and plumbing instructors. Safety is stressed. Lab.

PLBG 1316
PLUMBING INTERNSHIP II
This internship will be a cooperative agreement between industry and education which allows the student to utilize and refine skills learned in their educational process. All work is to be performed in accordance with the plumbing industry standards and will be supervised by plumbing contractors and plumbing instructors. Safety is stressed. Lab.

PLBG 1322
BUILDING SYSTEMS LAYOUT
Techniques and procedures of construction project layout will be emphasized, analyzing and planning the steps needed for proper location of building systems regarding plumbing and/or electrical systems, including linear and angular measurements, erection of batter boards and other layout reference points for interior and exterior layout. Assignments will involve the use of construction plans and specifications. Theory/Lab.

PLBG 1332
AIR CONDITIONING PRINCIPLES
A basic overview of the installation and maintenance of an air conditioning system. Both the split and twin air will be studied. Theory/Lab.

PLBG 2090 (1-9 CREDIT HOURS)
SPECIAL PROJECTS
Individual study will be arranged under the supervision of an instructor with credit hours to be determined. Projects may be undertaken in any area of plumbing. Theory/Lab. Prerequisite: The Division Chair’s approval.

PLBG 2413
PLUMBING ESTIMATING
Designed to provide knowledge and experience in preparing take-offs and projecting job summaries of time, labor and materials for plumbing systems, and preparing assemblies for use on computer systems. Theory/Lab.

PLBG 2416
PLUMBING INTERNSHIP III
This internship will be a cooperative agreement between industry and education which allows the student to utilize and refine skills learned in their educational process. All work is to be performed in accordance with the plumbing industry standards and will be supervised by plumbing contractors and plumbing instructors. Safety is stressed. Lab.

PLBG 2503
PLUMBING CODES
An in-depth study of the current plumbing code involving the proper installation of water, and drainage and vent
systems. The student will receive instruction in layout and design of plumbing systems in a 3-story or less plumbing application. Strong emphasis on job safety the use of code practices in the second internship of the industry specific plumbing program. Theory.

PLBG 2512
PLASTIC PLUMBING SYSTEMS
This course will develop an understanding of the pipe wrap around, layout of 45 and 90-degree branch fittings, plastic welding, plastic fusion and fiberglass applications on pipe. Theory/Lab.

PLBG 2513
ADVANCED PLUMBING CODES
An in-depth study of the current plumbing code in surrounding states. The student will receive instruction in layout, drain and vent sizing, and design of plumbing systems in multistory (more than 3-branch intervals) plumbing applications. Theory.

PLBG 2516
PLUMBING INTERNSHIP IV
This internship will be a cooperative agreement between industry and education which allows the student to utilize and refine skills learned in their educational process. All work is to be performed in accordance with the plumbing industry standards and will be supervised by plumbing contractors and plumbing instructors. Safety is stressed. Lab.

PLBG 2553
PIPING/SAFETY PRACTICES FOR ACR
This course focuses on piping techniques that will benefit the HVAC apprentice, journeyman, and contractor. Related OSHA safety practices will be emphasized. An OSHA 10 rating will be given upon class completion. Piping with plastics, and steel is covered. Materials, joints, connections will include: mechanical, solvent cement welds, poly fusion welds, and steel. Theory/Lab.

PLBG 2615
PLUMBING INTERNSHIP V
This internship will be a cooperative agreement between industry and education which allows the student to utilize and refine skills learned in their educational process. All work is to be performed in accordance with the plumbing industry standards and will be supervised by plumbing contractors and plumbing instructors. Safety is stressed. Lab.

PLBG 2626
PLUMBING CAPSTONE PROJECT
As a final project, a summary of all completed internships and courses will be developed into a system, including one or all of the following, job description, job task analysis, safety analysis, preventive maintenance, predictive maintenance, or a project approved by the instructor. Theory/Lab.

PLANT SCIENCE (PLNT)

PLNT 1213
INTRODUCTION TO PLANT AND SOIL SYSTEMS
This course introduces the concepts of plant and soil systems including cropland, rangeland and pastureland. A systems approach to the importance of plant and soil resources to the producer, consumer and citizen; modern management and production practices; maintenance of natural resources is covered. Theory.

PLNT 2013
PRINCIPLES OF CROP SCIENCE
This course involves production, management, and improvement of agronomic crops and structure and growth of crop plants relating to management strategies and adaptation to varying abiotic and biotic factors. A hands-on identification of crops, weeds and seed quality factors; application of tools and techniques is included. Theory. Prerequisite: PLNT 1213.

PLNT 2113
PRINCIPLES OF PEST MANAGEMENT
Decision-making as it deals with the total cropping plan is stressed. An individual will determine economic injury and treatment thresholds from observation or through various survey techniques; weed problem, plant populations, disease problems and insect problems. The student will do yield checks and make recommendations for handling a variety of pest related problems. The use of Global Positioning and Geographic Information Systems in recording pest management data is covered. Theory. Prerequisite: PLNT 1213 or Division Chair approval.

POLITICAL SCIENCE (POLS)

POLS 1011
CONTEMPORARY POLITICAL ISSUES I
This course is a discussion of current and generally controversial political and social issues. Theory.

POLS 1021
CONTEMPORARY POLITICAL ISSUES II
This course is a discussion of current and generally controversial political and social issues. Theory. Prerequisite: POLS 1011 or Division Chair approval.
POLS 1031
CONTEMPORARY POLITICAL ISSUES III
This course is a discussion of current and generally controversial political and social issues. Theory.
Prerequisite: POLS 1021 or Division Chair approval.

POLS 1113
U.S. GOVERNMENT
This course provides an overview of the American constitutional government. The role of the political parties and pressure groups, the legislative, executive and judicial branches and the role of national government in foreign affairs, fiscal-monetary policies and civil rights are examined. Theory. Note: available online.

PSYCHOLOGY (PSYC)
PSYC 1113 (S)
INTRODUCTORY PSYCHOLOGY
This is an introductory course which presents the principles, theories, vocabulary and applications of the science of psychology. Heredity and environment, development of personality, behavior, learning applications and life span development are discussed. Theory. Note: available online.

PSYC 2313 (S)
PSYCHOLOGY OF PERSONAL ADJUSTMENT
This is a beginning course in psychology which emphasizes basic principles of personality, motivation, attitude development and positive problem solving models in personal, social and career settings. Theory.

PSYC 2583 (S)
DEVELOPMENTAL PSYCHOLOGY
This course is a study of the nature and course of development of human behavior from birth through childhood, adolescence, adulthood and old age. Theory. Prerequisite: PSYC 1113 or Division Chair approval.

READING (READ)
READ 0143
READING FUNDAMENTALS
This course reviews the fundamentals of reading with an emphasis toward the improvement of reading comprehension and vocabulary skills. This is a competency-based course and student's COMPASS test scores determine placement. This course does not count toward graduation or any degree program. Theory.

RESIDENTIAL CONSTRUCTION (RESC)
These courses are a part of a Cooperative Alliance Agreement with technology centers and are not offered on the OSU Institute of Technology campus.

RESC 1101
INTRODUCTION TO RESIDENTIAL CONSTRUCTION
This course provides a historic overview of residential construction and examines career opportunities in the residential construction marketplace. Theory.

RESC 1103
READING PLANS AND ELEVATIONS
Students will learn the techniques for reading and interpreting blueprints and specifications with an emphasis on those drawings and types of information that are relevant to the carpentry trade. Quantity take-offs will also be examined. Theory/Lab.

RESC 1113
SITE LAYOUT
This course covers the basic principles, equipment, and methods used to perform site layout tasks. Also covered are topics such as distance measurement and differential leveling, responsibilities of surveyors, field engineers, and carpenters. Students will examine site plans and plot plans as they relate to the situation of a structure on a building site. Theory/Lab.

RESC 1203
FOUNDATIONS AND FLATWORK
Topics covered include the construction of forms for continuous, stepped continuous, pier, and grade beam concrete footings. Also covered are edge forms used for on-grade concrete slabs and similar structures. Forming terms, parts of forms, and the procedures for constructing basic footing and edge forms are included. Theory/Lab.

RESC 1213
INTRODUCTION TO CONCRETE AND REINFORCING MATERIALS
Students will examine the properties, characteristics, and uses of various types of cement, aggregates, and other materials that, when mixed together, form different types of concrete. Procedures for concrete volume estimates and testing of freshly mixed concrete are covered along with methods and materials for curing concrete. Theory/Lab.
RESC 1303
FLOOR SYSTEMS
This course covers the basics as well as the procedures for laying out and constructing wood floors using common lumber as well as engineered building materials. Theory/Lab.

RESC 2313
WALL AND CEILING SYSTEMS
Topics covered include the procedures for laying out and framing walls and ceilings, including roughing-in door and window openings, constructing corners and partition T's, bracing walls and ceilings and applying sheathing. Theory/Lab.

RESC 2323
ROOF FRAMING SYSTEMS
This course examines the various kinds of roofs and contains instructions for laying out rafters for gable roofs, hip roofs, and valley intersections. Students will learn roof framing using both the stick-built method and pre-engineered trusses. Theory/Lab.

RESC 2403
THERMAL AND MOISTURE PROTECTION
In this course students will learn how to select and install various types of insulating materials in walls, floors, and attics. The uses and installation practices for vapor barriers and waterproofing materials will also be covered. Theory/Lab.

RESC 2413
INTERIOR FINISHES
Topics covered include the installation of metal doors and related hardware in steel-framed, wood-framed, and masonry walls, along with their related hardware. The uses, application and installation procedures for various types of wood trim are also covered. Students will also study the various types of cabinets available and their installation. Theory/Lab.

RESC 2424
CAPSTONE
This course can be either a in the classroom experience or an on the job internship. The in the classroom experience will allow the students to used the knowledge from all the previous course work to put a plan together to develop and build a residential construction project. The internship would be cooperation between industry and education allowing a student to utilize and refine skills learned in their educational process. This would be a minimum of 225 clock hours. Theory/Lab.

RESC 2454
INTERNSHIP
This internship will be a supervised cooperative industry experience which allows students the opportunity to utilize and refine skills previously learned in their educational process. All work is to be performed in accordance with industry standards and guidelines. Lab. Prerequisite: Student must be in good academic standing.

SOCIOLOGY (SOC)
SOC 1113 (S)
INTRODUCTORY SOCIOLOGY
This course assists the student in understanding the social influences on day-to-day life by examining the sciences of human society. Major emphasis is placed on the study of group behaviors. Theory. Note: available online.

SOIL SCIENCE (SOIL)
SOIL 2124
FUNDAMENTALS OF SOIL SCIENCE
Principal physical, chemical and biological properties of the soil related to plant growth; soil testing and fertilizer usage; formation and classification of soils, rural and urban land use. Theory/Lab. Prerequisite: CHEM 1314 or Division Chair approval.

SPANISH (SPAN)
SPAN 1115
ELEMENTARY SPANISH I
This course offers college level instruction in the fundamentals of pronunciation, elements of grammar, easy reading and conversation. Theory.

SPAN 1215
ELEMENTARY SPANISH II
This course is a continuation of SPAN 1115. It includes instruction in pronunciation, grammar, more difficult reading and advanced conversation. Theory. Prerequisite: SPAN 1115 or Division Chair approval.

SPEECH (SPCH)
SPCH 1113
INTRODUCTION TO SPEECH COMMUNICATIONS
This course offers instruction on preparation and delivery of extemporaneous speeches. Emphasis is on audience and purpose analysis, topic research, visual aids and delivery methods. Activities include delivering various speeches before an audience. Speaking situations,
commonly encountered in business and industry, receive special attention. Theory.

SPCH 2313
SMALL GROUP COMMUNICATIONS
Small Group Communication focuses on enhancing student understanding of and skills for participation in small group interaction. This course addresses various social dimensions of group processes such as group development, leadership, conflict resolution and verbal and nonverbal communication strategies. Particular emphasis is on task-oriented groups. Theory.

STATISTICS (STAT)

STAT 2013 (A)
ELEMENTARY STATISTICS
This is an introductory course in descriptive statistics, basic probability concepts, statistical distributions samplings, estimations, hypothesis testing, correlation, and regression. Theory. Prerequisite: MATH 1513 or Division Chair approval.

STAT 2023 (A)
ELEMENTARY STATISTICS FOR BUSINESS AND ECONOMICS
Basic statistics course for undergraduate business majors. Descriptive statistics, basic probability, discrete and continuous distributions, point and interval estimation, hypothesis testing, correlation and simple linear regression. No credit for students with credit in 2013 or 2053. Prerequisite(s): MATH 1483 or 1513.

SURVEYING (SURV)

SURV 1011
INTRODUCTION TO SURVEYING
Each learner will demonstrate proper procedures of use, and capabilities of several different surveying instruments, including a transit, theodolite, total station, and a builder’s level. Each learner will also perform mathematic computations to solve surveying related problems. Theory/Lab. Co-requisite: MATH 0163 if needed.

SURV 1223
LAND LAW I
Each learner will determine how the concepts of boundary creation, the ownership transfer, and description of real property, easements, and the history of boundaries are applied to the practice of land surveying. Theory.

SURV 2223
LAND LAW II
Each learner will understand the role of the surveyor in the legal system and apply the legal principles of locating conveyances, and boundaries in the field to the practice of surveying. Theory. Prerequisite: SURV 1223.

SURV 2303
SURVEYING I
This class is an introduction to and application of plane surveying procedures and field problems related to linear and angular measurements, differential leveling and topographic surveys. Students gain competency through a series of practical and real world field applications. Theory/Lab. Prerequisites: MATH 1513 and SURV 1011.

AUTOMOTIVE SERVICE TECHNOLOGY - TOYOTA (TTEN)

TTEN 1631
BRAKE FUNDAMENTALS
This course emphasizes theory, demonstration and practical lab work to cover the components and operation of automotive brake systems. It includes principles of hydraulics and friction, an introduction to anti-lock brake systems and principles, general shop safety and asbestos hazards. Theory/Lab.

TTEN 1641
SUSPENSION FUNDAMENTALS
This course uses theory, demonstration and practical lab work to cover the components and operation of automotive suspension and steering systems. It includes suspension and alignment geometry principles and benefits of proper alignment service. Electrical and electronic suspension and steering systems are introduced. General shop safety is covered. Theory/Lab.

TTEN 1651
ELECTRICAL FUNDAMENTALS
This course emphasizes theory, demonstration and practical lab work of basic automotive electrical systems. It includes circuit types and applications and emphasizes the use of electrical testing and measuring equipment. Safety is stressed. Theory/Lab.

TTEN 1661
MEASUREMENT FUNDAMENTALS
The principles, identification and use of automotive precision measuring tools and devices using the metric and decimal systems of measure are covered in this course through theory, demonstration and practical laboratory
TTEN 1671 ENGINE FUNDAMENTALS
The identification, principles and operation of internal combustion engines are covered in this course through theory, demonstration and practical laboratory. It includes identification and basic operation of related engine systems and introduction to shop safety and hand and power tools usage. Theory/Lab.

TTEN 1702 DEALER SERVICE INFORMATION/PROFESSIONAL TECHNICIAN PORTFOLIO
This course will consist of theory, demonstration and application of Toyota Motor Sales USA dealership operations, expectations and procedures with emphasis on dealership service operations, Toyota quality and customer satisfaction. Its emphasis is on career networking focusing on the variety of related career opportunities within the automotive service industry. Included are the materials and activities designed to aid the student in the completion of his/her Professional Technician Portfolio (T-PORT), including exposure to experts in the automotive service industry. It includes technician procedures and responsibilities regarding work ethics, shop and personal safety, tools and equipment, environmental and warranty policies, reference materials, pay system, product identification, employee/employer and customer relations. The Toyota Certified Technician Program (TCTP) and Automotive Service Excellence (ASE) certification are introduced and participation is required. Toyota entry requirements must be met. Safety is stressed. Theory/Lab.

TTEN 1704 TOYOTA ELECTRICAL SYSTEMS
This course will consist of theory, demonstration and application of electrical system operation and service and includes circuit construction and components. Testing using proper test equipment and techniques for on-car and off-car procedures will be taught. Instruction also involves Toyota battery, starting and charging system tests with emphasis given to system diagnosis, failure analysis and service according to Toyota specifications. Safety is stressed. Theory/Lab.

TTEN 1723 TOYOTA MINOR SERVICE
This course will consist of theory, demonstration and application of minor Toyota vehicle service emphasizing Toyota quality and customer satisfaction. It will include but is not limited to: pre-delivery service, Toyota recommended scheduled maintenance, used car inspections, rotate and balance tires, cooling system service, accessory installation and basic electrical system tests. Other skills emphasized will include proper decision making techniques and the proper procedures and use of Toyota reference materials, repair orders, flat rate and warranty manuals, tools and equipment, care and handling of vehicles. Tools will be required and safety stressed. Theory/Lab.

TTEN 1812 TOYOTA BODY ELECTRICAL
This course will consist of theory, demonstration and application of electrical circuit operation and testing on Toyota simulators and vehicles using meters, wiring diagrams, repair manuals and other printed material as well as video information. Testing is performed according to Toyota specifications and includes wire repair and component testing with emphasis on systematic testing, failure analysis, diagnosis and service according to Toyota specifications. Safety is stressed. Theory/Lab.

TTEN 1823 TOYOTA BRAKE SYSTEMS
This course will consist of theory, demonstration and application of Toyota brake systems operation, diagnosis, preventive maintenance and service and includes proper use of specialized tools and equipment for Toyota. Power brakes, load sensing braking system as well as antilock brake system are taught with emphasis given to system diagnosis, failure analysis and Toyota recommended service procedures. Safety is stressed. Theory/Lab.

TTEN 1824 INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows T-TEN students to utilize and refine skills previously learned in their educational process. All work will be performed to industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing, completed previous core courses and must have a valid driver’s license.

TTEN 1913 TOYOTA ENGINE REPAIR
This course will consist of theory, demonstration and application of Toyota engine repair and service procedures. Subjects included are identification, diagnosis, inspection, disassembly, measurement and assembly with emphasis given to the use of Toyota repair manuals.
special tools, precision measurement device, troubleshooting techniques and shop safety. Theory/Lab.

TTEN 1923
TOYOTA CLIMATE CONTROL SYSTEM
This course will consist of theory, demonstration and application of Toyota vehicle heating, ventilating and air conditioning (HVAC) systems and includes basic heating, refrigeration and air conditioning, component identification and function, air flow systems, electrical circuits related to HVAC systems, special tools and equipment usage as well as system service, repair and adjustments, recovery, recycling and charging and performance testing. Emphasis is also placed on diagnosis and safety. Theory/Lab.

TTEN 1943
INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows T-TEN students to utilize and refine skills previously learned in their educational process. All work will be performed to industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing, completed previous required T-TEN core courses and must have a valid driver’s license.

TTEN 2090 (1-9 CREDIT HOURS)
SPECIAL PROJECTS
Individual study will be arranged under the supervision of an instructor with credit hours to be determined. Projects may be undertaken in any area of Automotive Technology. Theory/Lab. Prerequisite: The program chair’s approval.

TTEN 2114
TOYOTA EFI AND COMPUTER CONTROL SYSTEMS
This course will consist of theory, demonstration and application of the component functions of Toyota ignition, electronic fuel injection and emission control systems. It includes the use of Toyota special tools, simulators and vehicles with emphasis on system diagnosis, failure analysis and service according to Toyota specifications. Safety is stressed. Theory/Lab.

TTEN 2133
TOYOTA ENGINE CONTROL DIAGNOSIS
This course will consists of theory, demonstration and application of Toyota engine control components including the ignition system, fuel injection system and emission control system using the Toyota diagnostic tool and other specialized equipment available to the Toyota technician.

Emphasis is on maintaining, servicing and diagnosis using Toyota specifications. Safety is stressed. Theory/Lab.

TTEN 2134
INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows T-TEN students to utilize and refine skills previously learned in their educational process. All work will be performed to industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing, completed previous required T-TEN core courses and must have a valid driver’s license.

TTEN 2233
TOYOTA MANUAL DRIVETRAINS
This course will consist of theory, demonstration and application of Toyota manual transmissions and transaxles and other related drivetrain components. Component/system operation, service, adjustments and overhaul are covered. Emphasis will be given to system maintenance, diagnosis and failure analysis and involves the use of specialized tools and equipment. Safety is stressed. Theory/Lab.

TTEN 2234
TOYOTA AUTOMATIC TRANSMISSIONS
This course will consist of theory, demonstration and application of Toyota automatic transmissions/transaxles and related drivetrain components and includes component and system operation, testing, minor service as well as transmission disassembly/assembly. Electronic control operation and diagnosis are emphasized and the course involves the use of specialized tools and equipment. Safety is stressed. Theory/Lab.

TTEN 2235
INTERNSHIP
This internship will be a cooperative agreement between industry and education which allows T-TEN students to utilize and refine skills previously learned in their educational process. All work will be performed to industry standards and guidelines and will be supervised by industry and school representatives. Lab. Prerequisites: Student must be in good academic standing, completed previous required T-TEN core courses and must have a valid driver’s license.

TTEN 2343
TOYOTA SUSPENSIONS/NVH
This course consists of theory, demonstration and
application of Toyota steering and suspension systems. Operation, diagnosis, adjustments and servicing are emphasized using proper procedures, special equipment and tools. A holistic approach to Toyota vehicle suspension systems including noise, vibration and harshness (NVH) analysis using Toyota diagnostic tools is taught and safety is stressed. Theory/Lab.

TTEN 2353
TOYOTA CAPSTONE
This course is designed to allow students to utilize and refine skills previously learned in the educational process. Included in this course are the diagnosis and servicing of electronically controlled systems found on Toyotas as well as the proper use of special tools and information used to make repairs to industry standards. The Capstone course will include discussion of student goals and duties specific to the industry and specific competencies demonstrated during the course. Students will complete the Career Passport, post tests and exit assessments. Theory/Lab.

VISUAL COMMUNICATIONS (VIS)

VIS 1123
INDESIGN PUBLISHING I
Students are introduced to the Macintosh operating system, file management, basic typography and desktop printer output. A basic overview of industry appropriate applications are covered. Theory/Lab.

VIS 1143
INTRO TO MOTION GRAPHICS
This course is an introduction to terminology and concepts of Motion Graphics. Students will gain hands-on experience learning core concepts of making things move on screen to communicate emotions and ideas. The skills acquired in this class prepare the student for Multimedia Authoring and Post Production Graphics I. Theory/Lab. Prerequisites: VIS 1123, GRD 1143.

VIS 1203
INTRODUCTION TO TYPOGRAPHY
Type measurement, methods of type, production, historical survey of type, use of type and type design are covered in this course. Theory/Lab. Prerequisites: GRD 1133, GRD 1143. Co-requisite: VIS 1123.

VIS 1223
INDESIGN PUBLISHING II
This is a project-driven course emphasizing page layout software. Students will create single and multi-page, black and white layouts. Projects will incorporate keyboard shortcuts, file management, typographic rules, grids, style sheets and master pages using industry appropriate page layout applications. Theory/Lab. Prerequisite: VIS 1123 or Division Chair’s approval.

VIS 1343
DIGITAL ILLUSTRATION
Covering digital illustration and drawing. Primary emphasis is on the use of illustration software. Various peripheral devices will be used including scanners and color printers. Theory/Lab. Prerequisite: VIS 1123.

VIS 1373
DIGITAL IMAGING
Designed to develop a working knowledge of scanning and photo enhancement software on computer publishing systems. The course uses a problem-oriented approach in handling digital images as used in design. Alternative illustration techniques are included, combining stock digital images and created images. Includes an introduction to prepress requirements and four-color process. Theory/Lab. Prerequisite: VIS 1123. Co-requisite: VIS 1223 or the Division Chair’s approval.

VIS 2090 (1-9 CREDIT HOURS)
SPECIAL PROJECTS
Individual study under the supervision of an instructor with the number of credit hours to be determined by the complexity of the project. Projects may be undertaken in any area of the visual communications field. Theory/Lab. Prerequisite: The Division Chair’s approval.

VIS 2433
MULTIMEDIA PRACTICUM
This course explores a variety of multimedia communication vehicles including text, graphics, video, audio and interactivity through the planning, design and production of titles. Students will experience working in a producer/client relationship as well as organizing, planning and producing a variety of projects. Emphasis in the class is in developing interpersonal communication, and web production skills. Theory/Lab.

VIS 2483
COLOR AND DIGITAL CONCEPTS
An advanced color theory course exploring issues in digital color, digital photography, and image file formats. Close attention will be given to color calibration. Various software packages are used to prepare color projects. Students develop an understanding of value and color as it applies to color models and will demonstrate knowledge of both printed and digital output. Emphasizes problem solving,
development of visual color acuity, understanding color harmony, calibration and imaging techniques, and the psychological, societal, and environmental impact of color. Theory/Lab. Prerequisite: PHO 1123.

VIS 2533 ADVANCED DIGITAL IMAGING
This course explores advanced digital imaging using problem solving techniques as they pertain to design, color correction, color theory, image restoration and repair, special effects/filters, and advanced masking/channel techniques. It includes a comprehensive knowledge of prepress and web output requirements and four-color/web-color space conversion issues as well as various aspects of color theory. Theory/Lab. Prerequisite: VIS 1373 or Division Chair's approval.

VIS 2583 ADVANCED DIGITAL ILLUSTRATION
Covering advanced digital illustration techniques; this course will utilize various peripheral devices with Adobe’s Illustrator software. The student will gain problem solving skills useful in computerized illustration. Special course – only offered with sufficient student interest. Theory/Lab. Prerequisite: VIS 1343, Division Chair’s approval.

WATCHMAKING & MICROTECHNOLOGY (WMT)

WMT 1116 CAREER CORNERSTONE / MICROTECHNOLOGY
This Career Cornerstone course explores the culture, challenges and opportunities that exist in the watchmaking industry. This course introduces terminology, theory and techniques needed to utilize watch technology. A heavy emphasis is placed on topics related to microtechnology including: metric system of measurement and measuring devices, tracing, sawing, precision filing, drilling, turning, heat treating, surface finishing, tool making, and tool sharpening. A basic understanding of the mechanical movement is learned and connections are drawn between micromechanics and watch service. Also included are instruction and laboratory experiences in shop and equipment maintenance and safety. Lab.

WMT 1126 ADVANCED MICROTECHNOLOGY I
This course builds upon and expands the foundations learned in WMT 1116. Additional advanced micromechanics proficiencies are learned and built upon including the construction, fitment and craftsmanship of high quality precision parts and mechanisms. Additional movement theory and service practices are learned. Also included are instruction and laboratory experiences in shop and equipment maintenance and safety. Lab. Prerequisites: WMT 1116.

WMT 1216 ADVANCED MICROTECHNOLOGY II
This course furthers the development of manufacturing skills with advanced machining techniques such as use of the cross slide, milling and machined surface finishing techniques. Additional movement theory, service practices and construction techniques culminate in the manufacture of the school watch project. Also included are instruction and laboratory experiences in shop and equipment maintenance and safety. Lab. Prerequisites: WMT 1126, MATH 1513 OR MATH 1613, PHYS 1114.

WMT 1226 EXTERNAL WATCH
This course emphasizes the case and bracelet. Students learn case and bracelet design and construction as well as refinishing techniques. Proper replacement of case parts such as crown and case tubes, pushers, bezels, gaskets and crystals is covered in detail, including water resistance theory and practical examination. Students are taught proper preparation and final presentation for the finished case as part of watch service. Lab. Prerequisite: WMT 1216.

WMT 1316 QUARTZ WATCH REPAIR
This course emphasizes the delicate operation of servicing, repairing, testing, and adjusting the modern quartz watch movement. Theory is taught on lubrication, electricity, stepping/servo motors, capacitors, basic circuitry functions, and electronic measurements. Practical classroom exercises will focus on movement service, parts handling and lubrication, cleaning techniques, testing equipment, and cell replacement as part of complete watch service. Lab. Prerequisites: WMT 1226, ENGL 1033 OR ENGL 1113, POLS 1113.

WMT 1326 MECHANICAL WATCH REPAIR
This course emphasizes the operation, design, and theory behind the modern mechanical watch movement. Classroom exercises prepare the student for diagnosis, repair, and maintenance of movement systems including: winding and setting mechanism, the barrel and mainspring, as well as understanding and analysis of functional principles of the gear train of modern mechanical watch movements. Students focus on complete watch service,
quality and understanding the culture and craftsmanship behind complete watch service. Lab. Prerequisite: WMT 1316.

WMT 2416
ESCAPEMENT AND OSCILLATOR
This course emphasizes understanding and analysis of functional principles of the escapement of modern mechanical watch movements as well as theory on historical escapements. Students will complete projects involving the proper setup and adjustment, diagnostic procedures, and repair techniques of the Swiss lever escapement in conjunction with watch service. Terminology of the balance wheel and hairspring, their composition and theory basics are covered, leading into the next course. Lab. Prerequisite: WMT 1326.

WMT 2426
PRECISION TIMING AND AUTOMATIC WATCHES
This course develops the student’s professional knowledge and combines watch service with technical learning experiences in the watch regulating unit, hairspring vibration, hairspring manipulations, and precision timing procedures. Students learn additional theory and repair of automatic winding mechanisms and how this mechanism affects overall timing accuracy. Additional complications are introduced at this time. Lab. Prerequisite: WMT 2416.

WMT 2516
CHRONOGRAPH WATCHES
This course culminates the theoretical and practical procedures used in the service and repair of high-grade mechanical chronograph watches. Emphasis is on precision timing and adjusting, as well as repairing and adjusting a variety of chronograph mechanisms through watch service. Lab. Prerequisites: WMT 2426, SPCH 1113 OR SPCH 2313.

WMT 2526
SHOP MANAGEMENT AND WORKFLOW STUDIES
This course emphasizes professional after sales service shop management strategies. This includes personal productivity evaluations and workflow practices. Students will experience a wide variety of movements and repairs during this course in order to be well prepared for the workplace. This setting will synthesize technical, behavioral, business and interpersonal skills into a holistic endeavor that prepares the student for the real world. Lab. Prerequisite: WMT 2516.

WMT 2616
ESTIMATING AND QUALITY CONTROL
This course builds upon all previous courses with additional estimating methods, cost/profit analysis and consistency analysis. It also combines all the previous courses quality control steps into one, focused study from initial intake of a repair through completion with a specific emphasis on quality. Lab. Prerequisites: WMT 2526, HIST 1483 OR HIST 1493, PHIL 1013 OR PHIL 1213.

WMT 2626
ADVANCED MECHANICAL WATCH REPAIR AND CAPSTONE
Students concentrate on improving quality, consistency and productivity in preparation for their final examination and entrance to the workplace. The AWCI CW21 Certification examination will be administered during this course as well as a final comprehensive exam of program competencies. The Capstone course culminates the entire educational effort to provide a practical application of the many different components related to their occupation. Students are required to participate in the exit assessment procedures to fulfill the requirements of this program of study. Lab. Prerequisite: WMT 2616.

WELDING AND METAL FABRICATIONS (WELD)
These courses are a part of a Cooperative Alliance Agreement with technology centers and are not offered on the OSU Institute of Technology campus.

WELD 1103
READING WELDING BLUEPRINTS
Topics covered in this course will include identification and description of welding symbols, description of various types of welds including fillet weld, groove weld, and non-destructive examination symbols. Students will learn how to read welding symbols on drawings, specifications and welding procedure specifications. Welding detail drawings will be examined and students will gain an understanding of the various lines used on drawings as well as fill, object view and dimensioning. Theory/Lab.

WELD 1113
OXY-FUEL WELDING AND CUTTING, AND PLASMA CUTTING
This course covers the safety requirements for oxy-fuel cutting, identifies oxy-fuel cutting equipment and the setup requirements for oxy-fuel cutting. Students will learn how to light, adjust, and shut down oxy-fuel equipment. Students will perform cutting exercises that include straight line cuts,
piercing, bevels, washing, and gouging. Also included in this course is the exploration of plasma cutting equipment, safety issues relating to plasma cutting, setup of plasma cutting equipment and cutting methods common to plasma cutting. Metals will be pierced, slotted, squared and beveled using plasma cutting equipment. Theory/Lab.

WELD 1123
INTRODUCTION TO SHIELDED METAL ARC WELDING (SMAW)
This course describes the SMAW process and the accompanying safety requirements. Setup of the arc welding equipment is explored in detail. Students will learn how to prepare the metal for welding, strike the arc, detect and correct arc blow, make stringer, weave, overlapping beads, and fillet welds. Theory/Lab.

WELD 1203
NON-DESTRUCTIVE TESTING
Topics covered include different methods of conducting non-destructive testing including liquid penetrant, magnetic particle, ultrasonic, and radiographic tests. Procedures for verifying that welds meet mandated requirements by using non-destructive testing techniques will also be covered. Theory/Lab.

WELD 1213
INTRODUCTION TO GAS TUNGSTEN ARC WELDING (GTAW)
This course describes the GTAW process and the requisite safety concerns. Uses of the GTAW welding process will be discussed along with an examination of various filler metals and shielding gasses. Students will learn how to pad in all positions using GTAW and carbon steel filler metals. Other skills introduced will include multi-pass, V-butt, and open-groove welds with carbon steel filler metals in the 1G, 2G, 3G and 4G positions. Theory/Lab.

WELD 1302
PHYSICAL CHARACTERISTICS AND MECHANICAL PROPERTIES OF METALS
Students will study the physical characteristics, mechanical properties, composition, and classification of common ferrous and nonferrous metals. Other topics covered will include visual inspection, magnetic testing, and x-ray fluorescent spectrometry methods used to identify metals. Students will also explore the need and procedure for preheating and post-heating metals in order to preserve weldment strength, ductility, and weld quality. Theory/Lab.

WELD 2313
INTRODUCTION TO FLUX CORED ARC WELDING (FCAW)
Students will learn the proper procedures for setting up FCAW equipment and will make V-groove pipe welds using the equipment. Welds will be performed in the 1G-Rotated, 2G, 5G and 6G positions. Theory/Lab.

WELD 2322
JOINT FIT-UP AND ALIGNMENT OF STRUCTURAL STEEL
This course will explore various job code specifications and describe the fit-up gauges and measuring devices used to check fit-up, alignment & the use of plate & pipe fit-up & alignment tools. Theory/Lab.

WELD 2323
ELECTRODE SELECTION AND WELD QUALITY
This course will explore the various types of welding electrodes and filler metals. The role of the American Welding Society (AWS) and the American Society of Mechanical Engineers (ASME) will be studied. Students will learn the proper storage and control of filler metals used in code welding. The AWS and ASME codes that govern welding will be examined students will learn to identify and explain weld imperfections. Theory/Lab.

WELD 2402
WELDING DESIGN
This course explores the methods and processes used to clean and prepare various types of base metals for cutting and welding; and identifies and explains joint design for a variety of welding application. The AWS Code is also examined in this course. Theory/Lab.

WELD 2405
SHIELDED METAL ARC WELDING (SMAW)
The setup and use of SMAW equipment will be explored in this course. Students will make open-root pipe welds in the 1G, 2G, 5G and 6G positions. Theory/Lab.

WELD 2412
JOINT FIT-UP AND ALIGNMENT OF PIPE
Topics covered include the proper cleaning and preparation of base metals before welding, job code specifications, use of fit-up gauges and measuring devices.
ADMINISTRATION, FACULTY & STAFF

OSU Institute of Technology is a branch campus of the Oklahoma State University system. The campus’ academic programs and policies are governed by the Board of Regents for Oklahoma State University and the A&M Colleges.

Oklahoma State University serves a supervisory and advisory function in areas of administration which involve coordination of policy. The Oklahoma State Regents for Higher Education is the coordinating board for all public higher education institutions.

Matters of general governance as they affect students are under the jurisdiction of the President of OSU Institute of Technology.

Board of Regents for Oklahoma State University and the A&M Colleges

Andrew W. Lester, Chair
Calvin J. Anthony
Douglas E. Burns
Rick Davis
Joe D. Hall
Jay L. Helm
Tucker Link, Vice Chair
Jim Reese
Lou Watkins
Jason Ramsey, Chief Executive Officer, Oklahoma City

Oklahoma State Regents for Higher Education

Glen D. Johnson, Chancellor
Marlin “Ike” Glass, J r., Chair
James “Jimmy” D. Harrel, Vice Chair
Michael C. Turpen, Secretary
John Massey, Assistant Secretary
Julie Carson
Joseph L. Parker, J r.
William Stuart Price
Gen. Toney Stricklin
Ronald H. White

Administration

Burns Hargis
President, Oklahoma State University
B.S., Oklahoma State University
J.D., University of Oklahoma

Bill Path
President/Provost, OSU Institute of Technology
B.A., Harding University
M.S., Texas A&M University
Ed.D., University of Arkansas

Linda L. Avant
Executive Vice President
B.A., Cameron University,
M.Ed., Southwestern State University
Ed.D., Oklahoma State University

Anita Gordy-Watkins
Vice President of Institutional Advancement
B.S., M.S., Oklahoma State University

Ina Agnew
Vice President of Student Services
B.A., University of South Florida
M.S., Murray State University

James R. Smith
Vice President of Fiscal Services
B.A., Hillsdale Free Will Baptist College
M.Div., Southwestern Baptist Theological Seminary
M.S., University of Arkansas

Greg Mosier
Vice President of Academic Affairs
B.A., Books Institute of Photography
M.S., Troy State University
Ed.D., New Mexico State University
Faculty

Achemire, Roy D.
Division Chair, Heavy Equipment & Vehicle Institute
B.S.Ed., Northwestern Oklahoma State University

Adams, Wesley
Heavy Equipment & Vehicle Institute
A.A.S., OSU Institute of Technology

Allen, Keah
Allied Health Sciences
A.A.S., Rogers State University
B.S.N., Bacone College

Allen, Mark
Division Chair, Arts & Sciences
B.S., M.S., Kansas State University
M.B.A., Pittsburg State University
Ph.D., Oklahoma State University

Allphin, Edward
Construction Technologies

Anderson, Jacqueline
Arts & Sciences
B.S., Harding University

Anderson, Todd D.
Engineering Technologies
A.A.S., OSU Institute of Technology

Asmussen, Angela M.
Arts & Sciences
B.A., Panhandle State University
M.A., Northeastern State University

Avakian, Robert W.
Arts & Sciences
B.S., Pennsylvania State University
M.S., Stanford University

Bagusetty, Geeth
Engineering Technologies
B.T., Jawaharlal Nehru Technological University
M.S., Oklahoma State University

Bender, James Jr.
Heavy Equipment & Vehicle Institute
A.A.S., OSU Institute of Technology

Benge, James
Arts & Sciences - Tutorial Center
B.A., Harding University
M.A., University of Arkansas

Bennett, Robert
Arts & Sciences - Tutorial Center
A.A.T., Eastern Oklahoma State College
B.S., East Central University

Biddle, Gerald R.
Automotive Technologies
A.A.S., OSU Institute of Technology

Bieloh, John
Culinary Arts
A.A.S., Art Institute of Dallas
B.A., Mississippi State University

Black, Judith
Workforce and Economic Development
B.S., University of Oklahoma
M.S., Northeastern State University

Block, Jennifer
Allied Health Sciences
B.A., University of Oklahoma
M.S., Oklahoma State University

Boatner, Joseph
Construction Technologies
A.A.S., OSU Institute of Technology

Brabec, Eric
Engineering Technologies
A.A.S., B.S., Wayland Baptist University

Brasier, Charles R.
Construction Technologies
<table>
<thead>
<tr>
<th>Name</th>
<th>Program</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown, Peter</td>
<td>Heavy Equipment & Vehicle Institute</td>
<td>B.A., University of Central Oklahoma</td>
</tr>
<tr>
<td>Bryant, Steven</td>
<td>Construction Technologies</td>
<td>A.A.S., OSU Institute of Technology</td>
</tr>
<tr>
<td>Burklin, James L.</td>
<td>Automotive Technologies</td>
<td>A.A.S., OSU Institute of Technology</td>
</tr>
<tr>
<td>Butler, Jennifer</td>
<td>Engineering Technologies</td>
<td>B.S. & M.S., Oklahoma State University</td>
</tr>
<tr>
<td>Caldwell, Brian</td>
<td>Visual Communications Technologies</td>
<td>B.A., Southwestern Oklahoma State University</td>
</tr>
<tr>
<td>Campbell, Jodi</td>
<td>Allied Health Sciences</td>
<td>B.S.N., University of Tulsa M.S.N., University of Oklahoma</td>
</tr>
<tr>
<td>Champion, Jason</td>
<td>Watchmaking & Microtechnology</td>
<td>A.A.S., OSU Institute of Technology</td>
</tr>
<tr>
<td>Cornell, James</td>
<td>Engineering Technologies</td>
<td>B.S., Oklahoma State University</td>
</tr>
<tr>
<td>Coulson, Janita C.</td>
<td>Arts & Sciences</td>
<td>B.A., M.A., University of Tulsa</td>
</tr>
<tr>
<td>Crandell, David</td>
<td>Information Technologies</td>
<td>M.S., University of Tulsa</td>
</tr>
<tr>
<td>Cunningham, Darrel</td>
<td>Engineering Technologies</td>
<td>A.S., Northeastern Oklahoma A & M College</td>
</tr>
<tr>
<td>Davis, Matthew Q.</td>
<td>Construction Technologies</td>
<td>B.S., Oklahoma State University</td>
</tr>
<tr>
<td>De La Pena, Carlos A.</td>
<td>Heavy Equipment & Vehicle Institute</td>
<td>A.S., Central Texas College B.S., Oklahoma State University</td>
</tr>
<tr>
<td>Dreyer, Melissa A.</td>
<td>Arts & Sciences</td>
<td>B.A., M.A., Northeastern State University Ph.D., Oklahoma State University</td>
</tr>
<tr>
<td>Duncan, Rachelle D.</td>
<td>Arts & Sciences</td>
<td>B.S., M.S., Northeastern State University Ed.D., Oklahoma State University</td>
</tr>
</tbody>
</table>
Dunham, Dell B.
Construction Technologies
A.A.S., Eastern Oklahoma State College

Dwyer, Timothy E.
Automotive Technologies

Foster, Regina D.
Arts & Sciences
B.S., University of Central Oklahoma
M.S., Oklahoma State University

Freeman, Michael
Engineering Technologies
A.A.S., OSU Institute of Technology
B.S., Oklahoma State University

Gaddy, Aaron
Construction Technologies
A.A.S., OSU Institute of Technology
B.S., Oklahoma State University

Glass, Donna
Arts & Sciences
A.T., OSU Institute of Technology
B.A., University of Science and Arts of Oklahoma
B.S., Oklahoma State University
M.A., Oklahoma State University

Godsey, Rex
Construction Technologies
A.A.S., OSU Institute of Technology

Gregory, Stevon D.
Assistant Division Chair, Automotive Technologies
B.S., Oklahoma State University

Guinn, Fillmor
Information Technologies
A.A., Odessa College
B.S., University of Texas of the Permian Basin
M.S., Keller Graduate School of Mgmt., DeVry University

Harmon, Nathan
Visual Communications Technologies
A.A.S. OSU Institute of Technology

Hayden, Dolph
Division Chair, Engineering Technologies
A.A.S., OSU Institute of Technology
B.S., Northeastern State University
M.S., Oklahoma State University

Henley, Celia
Culinary Arts
B.S., M.S., Texas Tech University

Herath, Gayan
Engineering Technologies
B.S., University of Peradeniya
M.S., Oklahoma State University

Hill, Jason S.
Automotive Technologies
A.A.S., OSU Institute of Technology
B.S., Oklahoma State University

Holman, Thomas W., J r.
Arts & Sciences
A.A., Rose State College
B.A., M.A., University of Central Oklahoma

Hoover, John II
Heavy Equipment & Vehicle Institute
A.A.S., OSU Institute of Technology

Hopkins, Chris
Visual Communications Technologies
A.A., Tulsa Community College
A.A.S., OSU Institute of Technology
B.S., M.S., St. Gregory's University

Ingold, Kelly M.
Automotive Technologies
Diploma, OSU Institute of Technology

Jones, James E. J r.
Construction Technologies
A.A.S., Vernon Regional J r. College
B.S.O.E., Wayland Baptist University
Jungo, Rene L.
Division Chair, Culinary Arts
A.S., Culinary Professional School

Kamm, Steven R.
Automotive Technologies
Diploma, OSU Institute of Technology

Kerr, Kelly
Visual Communications Technologies
B.S., Oklahoma State University

King, Boyd
Construction Technologies
A.A.S., OSU Institute of Technology

Kinzer, Calvin C.
Arts & Sciences
B.A., Oklahoma State University
M.A., University of Arkansas

Kornmueller, Guenter
Engineering Technologies
A.A., Wr. Neust udt Technical School, Austria

Latham, Larry E.
Visual Communications Technologies
B.A., University of Oklahoma

Lawson, Tommy L.
Automotive Technologies
B.S., Northeastern State University

Leib, William
Culinary Arts
A.S., Johnson and Wales University

Lewis, Brenda S.
Arts & Sciences
A.A.S., OSU Institute of Technology
B.S., University of Tulsa
M.S., Oklahoma State University

L’Heureux, Ron
Culinary Arts
A.A., Culinary Institute of America

Lindsey, Terryl G.
Assistant Division Chair
Heavy Equipment & Vehicle Institute
A.A.S., OSU Institute of Technology
B.S., M.S., Oklahoma State University

Lynch, Frank D.
Automotive Technologies
A.A.S., OSU Institute of Technology
B.S., Oklahoma State University

Madden, Michael
Allied Health Sciences
A.A.S., Hudson Valley Community College

Margwarth, Paul B.
Construction Technologies
A.A.S., OSU Institute of Technology

Marsh, Jason
Culinary Arts
A.A.S., OSU Institute of Technology

Martin, Christina
Allied Health Sciences
A.A.S., OSU Institute of Technology
B.S.N., M.B.A., Oklahoma Wesleyan University

Martin, Danna M.
Arts & Sciences
B.S., Lindenwood College
M.S.W., University of Texas at Arlington

Martin, Jana S.
Division Chair, Allied Health Sciences
A.A.S., Connors State College
B.S.N., M.S.N., University of Oklahoma

Martin, John D.
Heavy Equipment & Vehicle Institute
A.T., OSU Institute of Technology
B.S., Oklahoma State University

McCullough, James A.
Division Chair, Visual Communications Technologies
Diploma, OSU Institute of Technology
McLain, Aaron
Construction Technologies
A.A.S., OSU Institute of Technology
B.S., Oklahoma State University

Middleton, Delois A.
Arts & Sciences
B.A., Oral Roberts University
M.S.W., University of Oklahoma

Milliman, Kenneth
Engineering Technologies

Morton, Patricia J.
Arts & Sciences
A.S., Connors State College
B.S., M.B.S., Southeastern State University

Motley, Robin
Allied Health Sciences
B.S., M.S., University of Oklahoma

Mounger, Rebecca J.
Visual Communications Technologies
B.S., University of Central Oklahoma

Murphey, Stephen
Heavy Equipment & Vehicle Institute
A.A.S., OSU Institute of Technology
B.S., Oklahoma State University

Newman, G. Scott
Division Chair, Information Technologies
B.A., M.A., University of Oklahoma
M.A., University of Oxford
Ph.D., Oklahoma State University

Nunn, Gene A. Jr.
Construction Technologies

Olmstead, Steve G.
Division Chair, Construction Technologies
B.S., University of Oklahoma

Orosco, Glenda W.
Arts & Sciences
A.A.S., Butler Co. College
B.S., Youngstown State University
M.S., Oklahoma State University

Parmley, Clay T.
Arts & Sciences
B.S.Ed., Southwest Missouri State University
M.S., University of Tulsa

Pemberton, Clara E.
Arts & Sciences
B.S.E., University of Central Arkansas
M.S.E., Northeastern State University

Pemberton, John S.
Automotive Technologies
A.S., Connors State College
B.S., M.S., Oklahoma State University

Perryman, David G.
Culinary Arts
A.O.S., Scottsdale Culinary Institute

Peterson, M. Lynell
Arts & Sciences
B.S.Ed., M.Ed., East Central University

Pierce, Mike D.
Assistant Division Chair, Engineering Technologies
B.S., Northeastern State University
M.S., Oklahoma State University

Powell, Jarod
Arts & Sciences - Tutorial Center
B.S., Northeastern State University
M.S., Oklahoma State University

Pranger, Mark L.
Information Technologies
A.S., Rogers State University
B.S., M.S., M.B.A., Oklahoma State University

Presser, Steven E.
Construction Technologies
Prior, John F. Jr.
Automotive Technologies
A.A.S., OSU Institute of Technology
B.S., Oklahoma State University

Putman, Jim A.
Arts & Sciences
B.A., M.A., Northeastern State University

Ragan, Cindy
MAIP – Pryor
B.S., Southern Arkansas University
M.S., University of Arkansas

Rajanala, Sunita
Information Technologies
B.E., Andhra University, India
M.S., University of Southwestern Louisiana
M.S., University of Tulsa

Regier, George M.
Automotive Technologies
A.A.S., OSU Institute of Technology

Richey III, Guy
Construction Technologies
B.S., Oklahoma State University

Ritchey, Randolph E.
Information Technologies
A.A.S., OSU Institute of Technology
B.S., Northeastern State University
M.S., Oklahoma State University

Robison, Charles
Arts & Sciences
B.S., M.S., Oklahoma State University

Rodgers, Jonathan
Heavy Equipment & Vehicle Institute

Rodriguez, Mark H.
Arts & Sciences
B.S., University of Washington
M.S., New York University

Rubert, Steven J.
Arts & Sciences
A.S., Carl Albert State College
B.S., East Central University
M.S., Oklahoma State University

Shepherd, Roger
Program Chair, Air Conditioning & Refrigeration
A.A.S., OSU Institute of Technology
B.S., Oklahoma State University

Smith, Jennifer
Arts & Sciences
B.A., University of Oklahoma
M.S., University of Colorado
Ed.D., Oklahoma State University

Smith, Robert D.
Arts & Sciences
B.A., University of Oklahoma
M.A., University of Colorado

Smith, Troy
Automotive Technologies
A.A.S., The Metropolitan Community Colleges

Stacy, Michael
Construction Technologies

Stamper, Teri
Arts & Sciences
A.A., B.S., Rogers State University
M.Ed., Northeastern State University

Stenstrom, Kurt W.
Visual Communications Technologies
B.F.A., Kendall College of Art & Design

Sterling, Dana
Arts & Sciences
B.A., University of Tulsa
M.A., Oklahoma University
<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor, Roger</td>
<td>Engineering Technologies</td>
<td>A.A., Tulsa Community College</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.S., Oklahoma Wesleyan University</td>
</tr>
<tr>
<td>Thompson, Kathie T.</td>
<td>Arts & Sciences</td>
<td>B.A., Huntingdon College</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.Ed., Auburn University</td>
</tr>
<tr>
<td>Thompson, Mindy</td>
<td>Allied Health Sciences</td>
<td>A.A.S., Amarillo College</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A.A., Tulsa Community College</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.S.N., Northeastern State University</td>
</tr>
<tr>
<td>Tichenor, Stuart A.</td>
<td>Arts & Sciences</td>
<td>B.A., University of Sciences & Arts of Oklahoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.A., Oklahoma State University</td>
</tr>
<tr>
<td>Trammell, Mary</td>
<td>Visual Communications Technologies</td>
<td>B.S., University of Oklahoma</td>
</tr>
<tr>
<td>Trantham, Kenneth</td>
<td>Heavy Equipment & Vehicle Institute</td>
<td>A.A.S., OSU Institute of Technology</td>
</tr>
<tr>
<td>Tunnell, Royce</td>
<td>MAIP – Pryor</td>
<td>A.A., Northeastern Oklahoma A&M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.S., M.S., Oklahoma State University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.B.A., Oklahoma City University</td>
</tr>
<tr>
<td>Visconti, Arthur</td>
<td>Engineering Technologies</td>
<td>A.A.S., B.T., OSU Institute of Technology</td>
</tr>
<tr>
<td>Voorhees, William R.</td>
<td>Construction Technologies</td>
<td>B.A., University of Texas - Arlington</td>
</tr>
<tr>
<td>Ward, Ted</td>
<td>Information Technologies</td>
<td>B.S., Oklahoma State University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.S., University of Tulsa</td>
</tr>
<tr>
<td>Ware, Aaron</td>
<td>Culinary Arts</td>
<td>A.A.S., OSU Institute of Technology</td>
</tr>
<tr>
<td>Wilhite, Shawnna</td>
<td>Allied Health Sciences</td>
<td>A.A.S., Connors State College</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.S.N., Oklahoma Wesleyan University</td>
</tr>
<tr>
<td>Williams, Tammy</td>
<td>Arts & Sciences - Tutorial Center</td>
<td>A.A., Connors State College</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.S., Northeastern State University</td>
</tr>
<tr>
<td>Wilson, Lawrence A.</td>
<td>Arts & Sciences</td>
<td>B.S.Ed., M.Ed., Northeastern State University</td>
</tr>
<tr>
<td>Wilson, Sareca G.</td>
<td>Arts & Sciences</td>
<td>B.S., University of Oklahoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.S., Northeastern State University</td>
</tr>
<tr>
<td>Young, Charles</td>
<td>Engineering Technologies</td>
<td>A.A.S., OSU Institute of Technology</td>
</tr>
<tr>
<td>Ziegenbein, J ason</td>
<td>Watchmaking and Microtechnology</td>
<td>A.A.S., OSU Institute of Technology</td>
</tr>
<tr>
<td>Walker, Robert C.</td>
<td>Construction Technologies</td>
<td>B.S., Oklahoma State University</td>
</tr>
</tbody>
</table>
Professional Staff

Arnold, Darrin
Purchasing Specialist, Purchasing
A.A.S., OSU Institute of Technology

Avery, Kathy
Counseling Services
A.A., Carl Albert State College
B.S., Oklahoma State University
M.A., Sam Houston State University

Ballard, G. Chris
Director, Assessment and Testing Center
A.A.S., OSU Institute of Technology
B.S., Southern Nazarene University

Bowles, Crystal
Registrar
B.A., University of Central Oklahoma
M.A., Gordon-Cornwell College

Brewster, James W.
Director, Physical Plant Administration
B.F.A., North Texas State University
M.Ed., West Texas State University

Byrd, James
Director, Student Union
B.S., Oklahoma State University

Chancey, Kari
Director, Distance Learning and Academic Excellence
A.S., Connors State College
B.A., Northeastern State University

Clark, Hannah
Recruitment Specialist, Prospective Student Services
A.S., OSU Institute of Technology
B.S., Oklahoma State University

Colle, Rachel
Coordinator, International Recruitment & Programs University & External Relations
B.A., Oklahoma Baptist University
M.A., North Carolina State University

Corbin, Donald
Supervisor, Physical Plant Facilities Maintenance

Craig, Jody
Alliance Coordinator
B.S., Oklahoma State University
M.S., Oklahoma State University

Davis, P. Mitchell
Supervisor, Physical Plant Facilities Maintenance
A.A.S., OSU Institute of Technology

DeBock, Devin
Director, Residential Life
B.S., Southwestern Oklahoma State University
M.S., Oklahoma State University

Dennis, Beverly
Residence Coordinator, Residential Life
A.S. & B.S., Haskell Indian Nations University
M.S.W., University of Kansas

Duncan, Jenny C.
Director, Library Services
A.A., Northern Oklahoma College
B.A., University of Oklahoma
M.Ed., East Central University

Erwin, Shari
Director, Marketing & Communications
B.A., Missouri Southern State College
M.A., University of Arkansas

Force, Bruce
Director, Student Life
A.A.S., Northern Oklahoma College
B.S., M.S., Oklahoma State University

Fry, M. Scott
Director, MAIP - Pryor
B.S., Northeastern State University
M.S., Oklahoma State University

Gilroy, Lisa L.
Manager, IT Support, Computer & Information Services
B.S., Northeastern State University
Graham, Christopher
Assistant Director, Economic Development
B.A., University of Central Oklahoma

Hannon, Billy L.
Supervisor, Physical Plant Facilities Maintenance
A.A.S., OSU Institute of Technology

Harris, Glenda
Manager, Child Development Center

Hays, Larry Mark
Director, Workforce Economic Development & Training
University & External Relations
B.S., Oklahoma State University
M.P.A., University of Oklahoma

Holmes, Hayley
Manager, Food Services
B.S., M.S., Oklahoma State University

Howard, Sommer
Recruitment Specialist, Prospective Student Services
B.F.A., Savannah College of Art & Design

Howk, Beth
Bursar
B.S., Oklahoma State University

Hudson, Stephen II
Residence Coordinator, Residential Life
B.A., Henderson State University

Hudgens, Sandra G.
Director, Accounting Services
B.B.A, University of Central Arkansas

Hulett, Kevin
Director
Computer & Information Services
A.A.S., A.S., B.T., OSU Institute of Technology

Isham, Kevin M.
Manager, Custodial Services

Kieffer, Elizabeth A.
Reference & Instruction Librarian
B.A., University of Oklahoma
M.A., University of Kansas
M.L.I.S., University of Oklahoma

Lawson, Lee
Student Life
Sports and Wellness Coordinator
B.S., Oklahoma State University

Marshall, Kendrick
Coordinator, Workforce & Economic Development
B.A., University of Nebraska

Martin, Marshall
Supervisor, Physical Plant Facilities Maintenance
A.A.S., OSU Institute of Technology

Mercer, Bruce
Math Tutor
Arts & Sciences - Tutorial Center
A.S., OSU Institute of Technology

Miller, Chandra
Director, Purchasing
A.A.S., Seminole State College
B.B.A., Langston University
M.S., Oklahoma State University

Miller, Curtis
Institutional Research Analyst
B.A., East Central University
M.A., Ph.D., University of Tulsa

North, Paula
Director, Human Resources
B.S., Oklahoma State University

O’Mealey, Shelly
English Tutor, Tutorial Center
B.B.A., University of Oklahoma

Pitcher, Mark
Director, Physical Plant
B.S.B.A., Xavier University
Pittack, Kate
Director, Special Events & Programs
B.S., M.S., University of Nebraska

Rector, Katie
Instructional Design Specialist, Distance Learning
B.S., University of Tulsa
M.Ed., University of Texas

Reed, John F.
Supervisor, Motor Pool
Fiscal Services

Ross, Tonya
Scholarship Coordinator, Student Financial Services
A.A.S., Columbus Technical College

Sampson, Carl
Information Technology Support Specialist
Computer & Information Services
B.T., OSU Institute of Technology

Sanders, Diana
Director, Student Financial Services
B.A., Rogers State University

Shih, Sywan-Yue
Web and Multimedia Designer, Marketing and Communications
B.F.A., Oklahoma State University

Sitter, Allen
Webmaster, Computer & Information Services
A.S., A.A.S., B.T., OSU Institute of Technology

Smith, Damyn
Information Technology Support Specialist
Computer & Information Services
B.T., OSU Institute of Technology

Smith, Sharon
Marketing and Communications Coordinator
B.A., Oklahoma State University
M.A., University of Oklahoma

Spurlock, Chad
Director, Arts & Sciences – Tutorial Center
B.S.Ed., Northeastern State University
M.A., Southern Nazarene University

Stephenson, Aaron
Specialist
Computer & Information Services

Stryker, Thomas J.
Data Base Administrator
Computer & Information Services
A.S., A.A.S., OSU Institute of Technology

Teague, Stanley
Energy Coordinator, Physical Plant Administration
A.A., Tulsa Community College
B.A., University of Oklahoma

Todd, Nathaniel
Director, Prospective Student Services
B.A., Cameron University

Trammell, Genie
Director of Admissions
A.S., A.A.S., OSU Institute of Technology
B.S., Northeastern State University

Turney, Callie
Administrative Coordinator, OK Greenovation
B.S., Oklahoma State University

Walker, Brenda S.
Project Coordinator
Workforce & Economic Development
A.A.S., OSU Institute of Technology
B.T., Rogers State University

Williams, Emma M.
Systems Analyst, Programmer,
Computer & Information Services
A.A.S., OSU Institute of Technology
Wilson, Jay
Coordinator, Physical Plant Facilities Maintenance
Residential Life
A.A.S., OSU Institute of Technology

Wise, Richard C.
Manager, Infrastructure & Technical Support,
Computer & Information Services
A.A.S., OSU Institute of Technology

Wise, Sable
Recruitment Specialist, Prospective Student Services
A.A.S., Northeastern Oklahoma A & M College
B.A., Oklahoma State University - Tulsa

Woodard, Kimberly
Graphic Designer, Marketing & Communications
B.F.A., Oklahoma State University

Wooliver, Matthew
Chief of Police

Worthy, Lacy
IT Support Specialist
Computer & Information Services
B.T., OSU Institute of Technology

Wright, Barbara A.
Bookstore Manager

York, Allen H.
Supervisor, Grounds Maintenance
B.S., Oklahoma State University